Empowering Large Language Models to Set up a Knowledge Retrieval Indexer via Self-Learning
- URL: http://arxiv.org/abs/2405.16933v1
- Date: Mon, 27 May 2024 08:26:45 GMT
- Title: Empowering Large Language Models to Set up a Knowledge Retrieval Indexer via Self-Learning
- Authors: Xun Liang, Simin Niu, Zhiyu li, Sensen Zhang, Shichao Song, Hanyu Wang, Jiawei Yang, Feiyu Xiong, Bo Tang, Chenyang Xi,
- Abstract summary: We propose a pre-retrieval framework named Pseudo-Graph Retrieval-Augmented Generation (PG-RAG)
PG-RAG conceptualizes LLMs as students by providing them with abundant raw reading materials.
During the retrieval phase, PG-RAG mimics the human behavior in flipping through notes.
- Score: 17.83428132220955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) offers a cost-effective approach to injecting real-time knowledge into large language models (LLMs). Nevertheless, constructing and validating high-quality knowledge repositories require considerable effort. We propose a pre-retrieval framework named Pseudo-Graph Retrieval-Augmented Generation (PG-RAG), which conceptualizes LLMs as students by providing them with abundant raw reading materials and encouraging them to engage in autonomous reading to record factual information in their own words. The resulting concise, well-organized mental indices are interconnected through common topics or complementary facts to form a pseudo-graph database. During the retrieval phase, PG-RAG mimics the human behavior in flipping through notes, identifying fact paths and subsequently exploring the related contexts. Adhering to the principle of the path taken by many is the best, it integrates highly corroborated fact paths to provide a structured and refined sub-graph assisting LLMs. We validated PG-RAG on three specialized question-answering datasets. In single-document tasks, PG-RAG significantly outperformed the current best baseline, KGP-LLaMA, across all key evaluation metrics, with an average overall performance improvement of 11.6%. Specifically, its BLEU score increased by approximately 14.3%, and the QE-F1 metric improved by 23.7%. In multi-document scenarios, the average metrics of PG-RAG were at least 2.35% higher than the best baseline. Notably, the BLEU score and QE-F1 metric showed stable improvements of around 7.55% and 12.75%, respectively. Our code: https://github.com/IAAR-Shanghai/PGRAG.
Related papers
- Advancing Retrieval-Augmented Generation for Persian: Development of Language Models, Comprehensive Benchmarks, and Best Practices for Optimization [0.0]
The research aims to improve retrieval and generation accuracy by introducing Persian-specific models.
Three datasets-general knowledge(PQuad), scientifically specialized texts, and organizational reports- were used to assess these models.
MatinaSRoberta outperformed previous embeddings, achieving superior contextual relevance and retrieval accuracy across datasets.
arXiv Detail & Related papers (2025-01-08T22:16:40Z) - KG-CF: Knowledge Graph Completion with Context Filtering under the Guidance of Large Language Models [55.39134076436266]
KG-CF is a framework tailored for ranking-based knowledge graph completion tasks.
KG-CF leverages LLMs' reasoning abilities to filter out irrelevant contexts, achieving superior results on real-world datasets.
arXiv Detail & Related papers (2025-01-06T01:52:15Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.
Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.
We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - A Large-Scale Study of Relevance Assessments with Large Language Models: An Initial Look [52.114284476700874]
This paper reports on the results of a large-scale evaluation (the TREC 2024 RAG Track) where four different relevance assessment approaches were deployed.
We find that automatically generated UMBRELA judgments can replace fully manual judgments to accurately capture run-level effectiveness.
Surprisingly, we find that LLM assistance does not appear to increase correlation with fully manual assessments, suggesting that costs associated with human-in-the-loop processes do not bring obvious tangible benefits.
arXiv Detail & Related papers (2024-11-13T01:12:35Z) - Paths-over-Graph: Knowledge Graph Empowered Large Language Model Reasoning [19.442426875488675]
We propose Paths-over-Graph (PoG), a novel method that enhances Large Language Models (LLMs) reasoning by integrating knowledge reasoning paths from KGs.
PoG tackles multi-hop and multi-entity questions through a three-phase dynamic multi-hop path exploration.
In experiments, PoG with GPT-3.5-Turbo surpasses ToG with GPT-4 by up to 23.9%.
arXiv Detail & Related papers (2024-10-18T06:57:19Z) - GS-KGC: A Generative Subgraph-based Framework for Knowledge Graph Completion with Large Language Models [7.995716933782121]
We propose a novel completion framework called textbfGenerative textbfSubgraph-based KGC (GS-KGC)
This framework primarily includes a subgraph partitioning algorithm designed to generate negatives and neighbors.
Experiments conducted on four common KGC datasets highlight the advantages of the proposed GS-KGC.
arXiv Detail & Related papers (2024-08-20T13:13:41Z) - Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking [2.5238707656136694]
We propose Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking (GCL)
GCL is designed to learn from fine-grained rankings beyond binary relevance scores.
Our results show that GCL achieves a 94.5% increase in NDCG@10 for in-domain and 26.3 to 48.8% increases for cold-start evaluations.
arXiv Detail & Related papers (2024-04-12T15:30:03Z) - Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting [65.00288634420812]
Pairwise Ranking Prompting (PRP) is a technique to significantly reduce the burden on Large Language Models (LLMs)
Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs.
arXiv Detail & Related papers (2023-06-30T11:32:25Z) - KGE-CL: Contrastive Learning of Knowledge Graph Embeddings [64.67579344758214]
We propose a simple yet efficient contrastive learning framework for knowledge graph embeddings.
It can shorten the semantic distance of the related entities and entity-relation couples in different triples.
It can yield some new state-of-the-art results, achieving 51.2% MRR, 46.8% Hits@1 on the WN18RR dataset, and 59.1% MRR, 51.8% Hits@1 on the YAGO3-10 dataset.
arXiv Detail & Related papers (2021-12-09T12:45:33Z) - SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval [11.38022203865326]
SPLADE model provides highly sparse representations and competitive results with respect to state-of-the-art dense and sparse approaches.
We modify the pooling mechanism, benchmark a model solely based on document expansion, and introduce models trained with distillation.
Overall, SPLADE is considerably improved with more than $9$% gains on NDCG@10 on TREC DL 2019, leading to state-of-the-art results on the BEIR benchmark.
arXiv Detail & Related papers (2021-09-21T10:43:42Z) - Investigating Pretrained Language Models for Graph-to-Text Generation [55.55151069694146]
Graph-to-text generation aims to generate fluent texts from graph-based data.
We present a study across three graph domains: meaning representations, Wikipedia knowledge graphs (KGs) and scientific KGs.
We show that the PLMs BART and T5 achieve new state-of-the-art results and that task-adaptive pretraining strategies improve their performance even further.
arXiv Detail & Related papers (2020-07-16T16:05:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.