論文の概要: Learning thermodynamic master equations for open quantum systems
- arxiv url: http://arxiv.org/abs/2506.01882v1
- Date: Mon, 02 Jun 2025 17:11:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:09.32957
- Title: Learning thermodynamic master equations for open quantum systems
- Title(参考訳): 開量子系に対する熱力学マスター方程式の学習
- Authors: Peter Sentz, Stanley Nicholson, Yujin Cho, Sohail Reddy, Brendan Keith, Stefanie Günther,
- Abstract要約: 本稿では、学習可能で熱力学的に一貫した項を含むオープン量子システムのためのデータ駆動モデルを提案する。
訓練されたモデルは、環境との結合のハミルトニアンおよび線形成分を直接推定するので、解釈可能である。
- 参考スコア(独自算出の注目度): 0.1884913108327873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The characterization of Hamiltonians and other components of open quantum dynamical systems plays a crucial role in quantum computing and other applications. Scientific machine learning techniques have been applied to this problem in a variety of ways, including by modeling with deep neural networks. However, the majority of mathematical models describing open quantum systems are linear, and the natural nonlinearities in learnable models have not been incorporated using physical principles. We present a data-driven model for open quantum systems that includes learnable, thermodynamically consistent terms. The trained model is interpretable, as it directly estimates the system Hamiltonian and linear components of coupling to the environment. We validate the model on synthetic two and three-level data, as well as experimental two-level data collected from a quantum device at Lawrence Livermore National Laboratory.
- Abstract(参考訳): オープン量子力学系のハミルトンおよびその他の構成要素の特性は、量子コンピューティングやその他の応用において重要な役割を担っている。
科学的機械学習技術は、ディープニューラルネットワークを用いたモデリングなど、様々な方法でこの問題に適用されている。
しかし、開量子系を記述する数学的モデルの大半は線型であり、学習可能なモデルの自然な非線形性は物理原理を用いては組み込まれていない。
本稿では、学習可能で熱力学的に一貫した項を含むオープン量子システムのためのデータ駆動モデルを提案する。
訓練されたモデルは、環境との結合のハミルトニアンおよび線形成分を直接推定するので、解釈可能である。
本稿では,ローレンス・リバモア国立研究所の量子デバイスから収集した合成2段階データと3段階データについて検証した。
関連論文リスト
- Characterizing Non-Markovian Dynamics of Open Quantum Systems [0.0]
我々はTCLマスター方程式を用いて非マルコフ進化を特徴付ける構造保存手法を開発した。
本稿では,ローレンス・リバモア国立研究所のQuantum Device Integration Testbed (QuDIT) における超伝導量子ビットの実験データを用いた手法について述べる。
これらの知見は、短期量子プロセッサにおける量子制御とエラー軽減に寄与する、オープン量子システムの効率的なモデリング戦略に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-03-28T04:43:24Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Information-driven Nonlinear Quantum Neuron [0.0]
本研究では,オープン量子システムとして動作するハードウェア効率の高い量子ニューラルネットワークを提案する。
入力量子情報のパラメトリゼーションが容易な繰り返し相互作用に基づくこの散逸モデルが、微分可能非線形活性化関数を示すことを示す。
論文 参考訳(メタデータ) (2023-07-18T07:12:08Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Unified Quantum State Tomography and Hamiltonian Learning Using
Transformer Models: A Language-Translation-Like Approach for Quantum Systems [0.47831562043724657]
本稿では,量子状態トモグラフィとハミルトン学習を効果的に融合させるため,変圧器モデルに注意機構を取り入れた新しいアプローチを提案する。
簡単な2量子ビットの場合から、より複雑な2次元反強磁性ハイゼンベルク構造まで、様々な量子系におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-24T11:20:44Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
混合ワイル記号は、脳の過程を顕微鏡レベルで記述するために用いられる。
プロセスに関与する電磁場とフォノンモードは古典的または半古典的に扱われる。
ゼロ点量子効果は、各フィールドモードの温度を制御することで数値シミュレーションに組み込むことができる。
論文 参考訳(メタデータ) (2023-01-17T15:16:21Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Probing non-Markovian quantum dynamics with data-driven analysis: Beyond
"black-box" machine learning models [0.0]
オープン量子系の非マルコフ力学の解析に対するデータ駆動型アプローチを提案する。
提案手法では, 環境の有効次元と, 共同系環境量子力学のスペクトルを計測する。
オープン量子システムの様々なモデルを用いて提案手法の性能を実証する。
論文 参考訳(メタデータ) (2021-03-26T14:27:33Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Learning models of quantum systems from experiments [0.2740360306052669]
ハミルトニアンモデルは、科学と産業全体での物理的および化学的プロセスの研究と分析を支えている。
我々は、教師なし機械学習を用いて実験からハミルトンモデルを取得するためのアプローチを提案し、実証する。
論文 参考訳(メタデータ) (2020-02-14T18:37:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。