Transformers as Multi-task Learners: Decoupling Features in Hidden Markov Models
- URL: http://arxiv.org/abs/2506.01919v1
- Date: Mon, 02 Jun 2025 17:39:31 GMT
- Title: Transformers as Multi-task Learners: Decoupling Features in Hidden Markov Models
- Authors: Yifan Hao, Chenlu Ye, Chi Han, Tong Zhang,
- Abstract summary: Transformer based models have shown remarkable capabilities in sequence learning across a wide range of tasks.<n>We investigate the layerwise behavior of Transformers to uncover the mechanisms underlying their multi-task generalization ability.<n>Our explicit constructions align closely with empirical observations, providing theoretical support for the Transformer's effectiveness and efficiency on sequence learning across diverse tasks.
- Score: 12.112842686827669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer based models have shown remarkable capabilities in sequence learning across a wide range of tasks, often performing well on specific task by leveraging input-output examples. Despite their empirical success, a comprehensive theoretical understanding of this phenomenon remains limited. In this work, we investigate the layerwise behavior of Transformers to uncover the mechanisms underlying their multi-task generalization ability. Taking explorations on a typical sequence model, i.e, Hidden Markov Models, which are fundamental to many language tasks, we observe that: first, lower layers of Transformers focus on extracting feature representations, primarily influenced by neighboring tokens; second, on the upper layers, features become decoupled, exhibiting a high degree of time disentanglement. Building on these empirical insights, we provide theoretical analysis for the expressiveness power of Transformers. Our explicit constructions align closely with empirical observations, providing theoretical support for the Transformer's effectiveness and efficiency on sequence learning across diverse tasks.
Related papers
- Layer-Wise Evolution of Representations in Fine-Tuned Transformers: Insights from Sparse AutoEncoders [0.0]
Fine-tuning pre-trained transformers is a powerful technique for enhancing the performance of base models on specific tasks.<n>This paper explores the underlying mechanisms of fine-tuning, specifically in the BERT transformer.
arXiv Detail & Related papers (2025-02-23T21:29:50Z) - Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
In-context learning allows GPT-style transformers to generalize during inference without modifying their weights.
This paper focuses specifically on their ability to learn and predict affine recurrences as an ICL task.
We analyze the model's internal operations using both empirical and theoretical approaches.
arXiv Detail & Related papers (2024-10-22T21:30:01Z) - Unveil Benign Overfitting for Transformer in Vision: Training Dynamics, Convergence, and Generalization [88.5582111768376]
We study the optimization of a Transformer composed of a self-attention layer with softmax followed by a fully connected layer under gradient descent on a certain data distribution model.
Our results establish a sharp condition that can distinguish between the small test error phase and the large test error regime, based on the signal-to-noise ratio in the data model.
arXiv Detail & Related papers (2024-09-28T13:24:11Z) - Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
We propose to strengthen the structural inductive bias of a Transformer by intermediate pre-training.
Our experiments confirm that this helps with few-shot learning of syntactic tasks such as chunking.
Our analysis shows that the intermediate pre-training leads to attention heads that keep track of which syntactic transformation needs to be applied to which token.
arXiv Detail & Related papers (2024-07-05T14:29:44Z) - Skip-Layer Attention: Bridging Abstract and Detailed Dependencies in Transformers [56.264673865476986]
This paper introduces Skip-Layer Attention (SLA) to enhance Transformer models.
SLA improves the model's ability to capture dependencies between high-level abstract features and low-level details.
Our implementation extends the Transformer's functionality by enabling queries in a given layer to interact with keys and values from both the current layer and one preceding layer.
arXiv Detail & Related papers (2024-06-17T07:24:38Z) - A Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task [14.921790126851008]
We present a comprehensive mechanistic analysis of a transformer trained on a synthetic reasoning task.
We identify a set of interpretable mechanisms the model uses to solve the task, and validate our findings using correlational and causal evidence.
arXiv Detail & Related papers (2024-02-19T08:04:25Z) - Understanding the Expressive Power and Mechanisms of Transformer for Sequence Modeling [10.246977481606427]
We study the mechanisms through which different components of Transformer, such as the dot-product self-attention, affect its expressive power.
Our study reveals the roles of critical parameters in the Transformer, such as the number of layers and the number of attention heads.
arXiv Detail & Related papers (2024-02-01T11:43:13Z) - Systematic Generalization and Emergent Structures in Transformers
Trained on Structured Tasks [6.525090891505941]
We show how a causal transformer can perform a set of algorithmic tasks, including copying, sorting, and hierarchical compositions.
We show that two-layer transformers learn generalizable solutions to multi-level problems and develop signs of systematic task decomposition.
These results provide key insights into how transformer models may be capable of decomposing complex decisions into reusable, multi-level policies.
arXiv Detail & Related papers (2022-10-02T00:46:36Z) - Stochastic Layers in Vision Transformers [85.38733795180497]
We introduce fully layers in vision transformers, without causing any severe drop in performance.
The additionality boosts the robustness of visual features and strengthens privacy.
We use our features for three different applications, namely, adversarial robustness, network calibration, and feature privacy.
arXiv Detail & Related papers (2021-12-30T16:07:59Z) - Applying the Transformer to Character-level Transduction [68.91664610425114]
The transformer has been shown to outperform recurrent neural network-based sequence-to-sequence models in various word-level NLP tasks.
We show that with a large enough batch size, the transformer does indeed outperform recurrent models for character-level tasks.
arXiv Detail & Related papers (2020-05-20T17:25:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.