論文の概要: Built Different: Tactile Perception to Overcome Cross-Embodiment Capability Differences in Collaborative Manipulation
- arxiv url: http://arxiv.org/abs/2409.14896v1
- Date: Mon, 23 Sep 2024 10:45:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 15:26:12.933482
- Title: Built Different: Tactile Perception to Overcome Cross-Embodiment Capability Differences in Collaborative Manipulation
- Title(参考訳): 構築された異なる触覚:協調操作におけるクロス・エボディメント能力の差を克服するための触覚知覚
- Authors: William van den Bogert, Madhavan Iyengar, Nima Fazeli,
- Abstract要約: 触覚は、人間とロボットのアシスタントの間で暗黙のコミュニケーションを行う強力な手段である。
本稿では,触覚がロボットシステム間での身体間差異をいかに超越させるかを検討する。
本研究では,ロボットと人間が協調して宇宙空間で物体を操る,協調作業を可能にする方法を示す。
- 参考スコア(独自算出の注目度): 1.9048510647598207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tactile sensing is a powerful means of implicit communication between a human and a robot assistant. In this paper, we investigate how tactile sensing can transcend cross-embodiment differences across robotic systems in the context of collaborative manipulation. Consider tasks such as collaborative object carrying where the human-robot interaction is force rich. Learning and executing such skills requires the robot to comply to the human and to learn behaviors at the joint-torque level. However, most robots do not offer this compliance or provide access to their joint torques. To address this challenge, we present an approach that uses tactile sensors to transfer policies from robots with these capabilities to those without. We show how our method can enable a cooperative task where a robot and human must work together to maneuver objects through space. We first demonstrate the skill on an impedance control-capable robot equipped with tactile sensing, then show the positive transfer of the tactile policy to a planar prismatic robot that is only capable of position control and does not come equipped with any sort of force/torque feedback, yet is able to comply to the human motions only using tactile feedback. Further details and videos can be found on our project website at https://www.mmintlab.com/research/tactile-collaborative/.
- Abstract(参考訳): 触覚は、人間とロボットのアシスタントの間で暗黙のコミュニケーションを行う強力な手段である。
本稿では,触覚センサがロボットシステム間での相互身体的差異を協調操作の文脈で超越する方法について検討する。
人間とロボットの相互作用が豊かであるような、協調的な物体を運ぶようなタスクを考えてみましょう。
このようなスキルを習得し、実行するためには、ロボットが人間に従い、関節トルクレベルで行動を学ぶ必要がある。
しかし、ほとんどのロボットは、このコンプライアンスや関節トルクへのアクセスを提供していない。
この課題に対処するため,触覚センサを用いて,ロボットから不要なロボットへポリシーを伝達するアプローチを提案する。
本研究では,ロボットと人間が協調して宇宙空間で物体を操る,協調作業を可能にする方法を示す。
まず,触覚センサを備えたインピーダンス制御機能付きロボットの技術を実演し,触覚フィードバックのみを用いて人間の動作に順応することのできる,位置制御のみが可能な平面型原始ロボットに触覚ポリシーの正の伝達を示す。
詳細とビデオはプロジェクトのWebサイトhttps://www.mmintlab.com/research/tactile-collaborative/にある。
関連論文リスト
- Pedipulate: Enabling Manipulation Skills using a Quadruped Robot's Leg [11.129918951736052]
脚のついたロボットは、メンテナンス、ホームサポート、探索のシナリオにおいて不可欠になる可能性がある。
本研究では,ロボットの脚を操作に用いたペディピュレーションについて検討する。
論文 参考訳(メタデータ) (2024-02-16T17:20:45Z) - Robot Synesthesia: In-Hand Manipulation with Visuotactile Sensing [15.970078821894758]
視覚的・触覚的な感覚入力を活用して手動操作を可能にするシステムを提案する。
ロボット・シンセシス(Robot Synesthesia)は、人間の触覚と視覚の合成にインスパイアされた、新しい点の雲に基づく触覚表現である。
論文 参考訳(メタデータ) (2023-12-04T12:35:43Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
本稿では,ロボットの動きに対する新しいディープラーニング手法を提案する。
本手法では,新しいロボットへの翻訳を容易にする,人間とロボットのペアデータを必要としない。
我々のモデルは、効率と精度の観点から、人間とロボットの類似性に関する既存の研究よりも優れています。
論文 参考訳(メタデータ) (2023-09-11T08:55:04Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
本研究では,2つのロボットによるコミュニケーション意図による物体操作の知覚について検討する。
ロボットの動きを設計し,物体の搬送時に注意を喚起するか否かを判断した。
論文 参考訳(メタデータ) (2022-08-03T13:26:52Z) - Body Gesture Recognition to Control a Social Robot [5.557794184787908]
本研究では,人間の身体を自然に利用してロボットと対話できるジェスチャー型言語を提案する。
ニューラルネットワークを用いた新しいジェスチャー検出モデルと、ネットワークをトレーニングするための身体ジェスチャーセットを実行する人間のカスタムデータセットを作成しました。
論文 参考訳(メタデータ) (2022-06-15T13:49:22Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
我々は、繊細な物体を操作する際に人間が採用するのと同じキネマティクス変調を2つの異なるロボットプラットフォームに転送する方法に焦点を当てる。
我々は、ロボットのエンドエフェクターが採用する速度プロファイルを、異なる特徴を持つ物体を輸送する際に人間が何をするかに触発されて調整する。
我々は、人体キネマティクスの例を用いて訓練され、それらを一般化し、新しい有意義な速度プロファイルを生成する、新しいジェネレーティブ・アドバイサル・ネットワークアーキテクチャを利用する。
論文 参考訳(メタデータ) (2022-03-29T15:03:05Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
本稿では,空間コンピューティングを応用し,新しいロボットのユースケースを実現するためのロボットシステムについて述べる。
空間コンピューティングとエゴセントリックな感覚を複合現実感デバイスに組み合わせることで、人間の行動をキャプチャして理解し、それらを空間的な意味を持つ行動に変換することができる。
論文 参考訳(メタデータ) (2022-02-03T10:04:26Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
本稿では,ロボットが人間に遭遇するロボットのハンドオーバに対するアプローチを提案する。
対象物をさまざまな手形やポーズで保持する典型的な方法をカバーする,人間の把握データセットを収集する。
本稿では,検出した把握位置と手の位置に応じて人手から対象物を取り出す計画実行手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T19:58:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。