Research on Medical Named Entity Identification Based On Prompt-Biomrc Model and Its Application in Intelligent Consultation System
- URL: http://arxiv.org/abs/2506.01961v1
- Date: Thu, 08 May 2025 00:09:02 GMT
- Title: Research on Medical Named Entity Identification Based On Prompt-Biomrc Model and Its Application in Intelligent Consultation System
- Authors: Jinzhu Yang,
- Abstract summary: Our research introduces the Prompt-bioMRC model, which integrates both hard template and soft prompt designs.<n>Our findings consistently demonstrate that our approach surpasses traditional models.<n>This study contributes to advancing automated medical data processing, facilitating more accurate medical information extraction, and supporting efficient healthcare decision-making processes.
- Score: 2.5889737226898446
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study is dedicated to exploring the application of prompt learning methods to advance Named Entity Recognition (NER) within the medical domain. In recent years, the emergence of large-scale models has driven significant progress in NER tasks, particularly with the introduction of the BioBERT language model, which has greatly enhanced NER capabilities in medical texts. Our research introduces the Prompt-bioMRC model, which integrates both hard template and soft prompt designs aimed at refining the precision and efficiency of medical entity recognition. Through extensive experimentation across diverse medical datasets, our findings consistently demonstrate that our approach surpasses traditional models. This enhancement not only validates the efficacy of our methodology but also highlights its potential to provide reliable technological support for applications like intelligent diagnosis systems. By leveraging advanced NER techniques, this study contributes to advancing automated medical data processing, facilitating more accurate medical information extraction, and supporting efficient healthcare decision-making processes.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Towards Artificial Intelligence Research Assistant for Expert-Involved Learning [64.7438151207189]
Large Language Models (LLMs) and Large Multi-Modal Models (LMMs) have emerged as transformative tools in scientific research.<n>We present textbfARtificial textbfIntelligence research assistant for textbfExpert-involved textbfLearning (ARIEL)
arXiv Detail & Related papers (2025-05-03T14:21:48Z) - Biomedical Foundation Model: A Survey [84.26268124754792]
Foundation models are large-scale pre-trained models that learn from extensive unlabeled datasets.<n>These models can be adapted to various applications such as question answering and visual understanding.<n>This survey explores the potential of foundation models across diverse domains within biomedical fields.
arXiv Detail & Related papers (2025-03-03T22:42:00Z) - Accurate Medical Named Entity Recognition Through Specialized NLP Models [3.9425549051034063]
The study evaluated the effect of BioBERT in medical text processing for the task of medical named entity recognition.<n>The results showed that BioBERT achieved the best performance in both precision and F1 score, verifying its applicability and superiority in the medical field.
arXiv Detail & Related papers (2024-12-11T10:06:57Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.<n>Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - BioMNER: A Dataset for Biomedical Method Entity Recognition [25.403593761614424]
We propose a novel dataset for biomedical method entity recognition.
We employ an automated BioMethod entity recognition and information retrieval system to assist human annotation.
Our empirical findings reveal that the large parameter counts of language models surprisingly inhibit the effective assimilation of entity extraction patterns.
arXiv Detail & Related papers (2024-06-28T16:34:24Z) - Exploration of Attention Mechanism-Enhanced Deep Learning Models in the Mining of Medical Textual Data [3.22071437711162]
The research explores the utilization of a deep learning model employing an attention mechanism in medical text mining.
It aims to enhance the model's capability to identify essential medical information by incorporating deep learning and attention mechanisms.
arXiv Detail & Related papers (2024-05-23T00:20:14Z) - MRC-based Nested Medical NER with Co-prediction and Adaptive Pre-training [0.38498367961730184]
We propose a medical NER model based on Machine Reading (MRC), which uses a task-adaptive pre-training strategy to improve the model's capability in the medical field.
Our proposed model outperforms the compared state-of-the-art (SOTA) models.
arXiv Detail & Related papers (2024-03-23T11:14:02Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Multi-level biomedical NER through multi-granularity embeddings and
enhanced labeling [3.8599767910528917]
This paper proposes a hybrid approach that integrates the strengths of multiple models.
BERT provides contextualized word embeddings, a pre-trained multi-channel CNN for character-level information capture, and following by a BiLSTM + CRF for sequence labelling and modelling dependencies between the words in the text.
We evaluate our model on the benchmark i2b2/2010 dataset, achieving an F1-score of 90.11.
arXiv Detail & Related papers (2023-12-24T21:45:36Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.