Alzheimers Disease Classification in Functional MRI With 4D Joint Temporal-Spatial Kernels in Novel 4D CNN Model
- URL: http://arxiv.org/abs/2506.02060v1
- Date: Sun, 01 Jun 2025 15:57:53 GMT
- Title: Alzheimers Disease Classification in Functional MRI With 4D Joint Temporal-Spatial Kernels in Novel 4D CNN Model
- Authors: Javier Salazar Cavazos, Scott Peltier,
- Abstract summary: We develop a novel 4D convolution network to extract 4D joint temporal-spatial kernels.<n>The 4D CNN model improves Alzheimers disease diagnosis for rs-fMRI data, enabling earlier detection and better interventions.<n>Future research could explore task-based fMRI applications and regression tasks, enhancing understanding of cognitive performance and disease progression.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Previous works in the literature apply 3D spatial-only models on 4D functional MRI data leading to possible sub-par feature extraction to be used for downstream tasks like classification. In this work, we aim to develop a novel 4D convolution network to extract 4D joint temporal-spatial kernels that not only learn spatial information but in addition also capture temporal dynamics. Experimental results show promising performance in capturing spatial-temporal data in functional MRI compared to 3D models. The 4D CNN model improves Alzheimers disease diagnosis for rs-fMRI data, enabling earlier detection and better interventions. Future research could explore task-based fMRI applications and regression tasks, enhancing understanding of cognitive performance and disease progression.
Related papers
- Voxel-Level Brain States Prediction Using Swin Transformer [65.9194533414066]
We propose a novel architecture which employs a 4D Shifted Window (Swin) Transformer as encoder to efficiently learn-temporal information and a convolutional decoder to enable brain state prediction at the same spatial and temporal resolution as the input fMRI data.<n>Our model has shown high accuracy when predicting 7.2s resting-state brain activities based on the prior 23.04s fMRI time series.<n>This shows promising evidence that thetemporal organization of the human brain can be learned by a Swin Transformer model, at high resolution, which provides a potential for reducing fMRI scan time and the development of brain-computer interfaces
arXiv Detail & Related papers (2025-06-13T04:14:38Z) - Towards a general-purpose foundation model for fMRI analysis [58.06455456423138]
We introduce NeuroSTORM, a framework that learns from 4D fMRI volumes and enables efficient knowledge transfer across diverse applications.<n>NeuroSTORM is pre-trained on 28.65 million fMRI frames (>9,000 hours) from over 50,000 subjects across multiple centers and ages 5 to 100.<n>It outperforms existing methods across five tasks: age/gender prediction, phenotype prediction, disease diagnosis, fMRI-to-image retrieval, and task-based fMRI.
arXiv Detail & Related papers (2025-06-11T23:51:01Z) - MinD-3D++: Advancing fMRI-Based 3D Reconstruction with High-Quality Textured Mesh Generation and a Comprehensive Dataset [50.534007259536715]
Reconstructing 3D visuals from functional Magnetic Resonance Imaging (fMRI) data is of significant interest to cognitive neuroscience and computer vision.<n>We present the fMRI-3D dataset, which includes data from 15 participants and showcases a total of 4,768 3D objects.<n>We propose MinD-3D++, a novel framework for decoding textured 3D visual information from fMRI signals.
arXiv Detail & Related papers (2024-09-17T16:13:59Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - Video4MRI: An Empirical Study on Brain Magnetic Resonance Image
Analytics with CNN-based Video Classification Frameworks [60.42012344842292]
3D CNN-based models dominate the field of magnetic resonance image (MRI) analytics.
In this paper, four datasets of Alzheimer's and Parkinson's disease recognition are utilized in experiments.
In terms of efficiency, the video framework performs better than 3D-CNN models by 5% - 11% with 50% - 66% less trainable parameters.
arXiv Detail & Related papers (2023-02-24T15:26:31Z) - fMRI-S4: learning short- and long-range dynamic fMRI dependencies using
1D Convolutions and State Space Models [0.0]
fMRI-S4 is a versatile deep learning model for the classification of phenotypes and psychiatric disorders from resting-state functional magnetic resonance imaging scans.
We show that fMRI-S4 can outperform existing methods on all three tasks and can be trained as a plug&play model without special hyperpararameter tuning for each setting.
arXiv Detail & Related papers (2022-08-08T14:07:25Z) - Highly Accurate FMRI ADHD Classification using time distributed multi
modal 3D CNNs [0.0]
This work proposes an algorithm for fMRI data analysis for the classification of ADHD disorders.
By leveraging a 3D-GAN it would be possible to use deepfake data to enhance the accuracy of 3D CNN classification of brain disorders.
arXiv Detail & Related papers (2022-05-24T11:39:11Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - 4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification [69.62333053044712]
We propose a 4D convolutional deep learning approach for ASD classification where we jointly learn from spatial and temporal data.
We employ 4D neural networks and convolutional-recurrent models which outperform a previous approach with an F1-score of 0.71 compared to an F1-score of 0.65.
arXiv Detail & Related papers (2020-04-21T17:19:06Z) - Attend and Decode: 4D fMRI Task State Decoding Using Attention Models [2.6954666679827137]
We present a novel architecture called Brain Attend and Decode (BAnD)
BAnD uses residual convolutional neural networks for spatial feature extraction and self-attention mechanisms temporal modeling.
We achieve significant performance gain compared to previous works on a 7-task benchmark from the Human Connectome Project-Young Adult dataset.
arXiv Detail & Related papers (2020-04-10T21:29:34Z) - A Hybrid 3DCNN and 3DC-LSTM based model for 4D Spatio-temporal fMRI
data: An ABIDE Autism Classification study [0.0]
We introduce an end-to-end algorithm capable of extracting features from full 4-D data using 3-D CNNs and 3-D Magnetical LSTMs.
Our results show that the proposed model achieves state of the art results on single sites with F1-scores of 0.78 and 0.7 on NYU and UM sites, respectively.
arXiv Detail & Related papers (2020-02-14T11:52:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.