Energetics of self-organization in a dissipative two-site quantum system driven by single-photon pulses
- URL: http://arxiv.org/abs/2506.02268v1
- Date: Mon, 02 Jun 2025 21:15:33 GMT
- Title: Energetics of self-organization in a dissipative two-site quantum system driven by single-photon pulses
- Authors: Thiago Ganascini, Wendel Lopes da Silva, Daniel Valente,
- Abstract summary: Finding principles of nonequilibrium self-organization in dissipative quantum systems is an open problem.<n>We show how quantum coherence leaves this kind of imprint in the energetics of self-organization in the present model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Finding principles of nonequilibrium self-organization in dissipative quantum systems is an open problem. One example is the notion of quantum dissipative adaptation (QDA), that relates the transition probability between the ground states of a quantum system to the nonequilibrium work absorbed during the transition. However, QDA has been originally derived with three-level systems in lambda ({\Lambda}) configuration. Here, we consider a model consisting of a two-site system driven by single-photon pulses. We find that the absorbed work is generally related to the sum of {\Lambda}-type transition probabilities, instead of the direct transition probability between the two ground states. Although this is equivalent to standard QDA in most scenarios, we find an exception whereby optimal self-organization does not maximize work consumption. We show how quantum coherence leaves this kind of imprint in the energetics of self-organization in the present model.
Related papers
- Theory of the correlated quantum Zeno effect in a monitored qubit dimer [41.94295877935867]
We show how the competition between two measurement processes give rise to two distinct Quantum Zeno (QZ) regimes.<n>We develop a theory based on a Gutzwiller ansatz for the wavefunction that is able to capture the structure of the Hilbert phase diagram.<n>We show how the two QZ regimes are intimately connected to the topology of the flow of the underlying non-Hermitian Hamiltonian governing the no-click evolution.
arXiv Detail & Related papers (2025-03-28T19:44:48Z) - Second Law of Entanglement Manipulation with Entanglement Battery [41.94295877935867]
A central question since the beginning of quantum information science is how two distant parties can convert one entangled state into another.<n>It has been conjectured that such conversions could be executed reversibly in an regime, mirroring the reversible nature of Carnot cycles in classical thermodynamics.<n>We show that arbitrary mixed state entanglement transformations can be made under local operations and classical reversible communication.
arXiv Detail & Related papers (2024-05-17T07:55:04Z) - Energetics of Fano coherence generation [0.0]
Fano coherences are quantum coherences formed when an incoherent source vanishes.
In this paper we certify the presence of genuinely quantum traits underlying the generation of Fano coherences.
We also show the existence of nonequilibrium regimes where the generation of Fano coherences leads to a non-negligible amount of extractable work.
arXiv Detail & Related papers (2024-02-25T10:42:51Z) - Quantum synchronization via Active-Passive-Decomposition configuration:
An open quantum system study [10.661359913434032]
We show that two or more quantum systems may be synchronized when the quantum systems of interest are embedded in dissipative environments.
We numerically show in an optomechanical setup that the complete synchronization can be realized in quantum mechanical resonators.
arXiv Detail & Related papers (2023-11-15T05:04:53Z) - Quasiprobability distribution of work in the quantum Ising model [0.0]
We try to clarify the genuinely quantum features of the process by studying the work quasiprobability for an Ising model in a transverse field.
We examine the critical features related to a quantum phase transition and the role of the initial quantum coherence as useful resource.
arXiv Detail & Related papers (2023-02-22T10:07:49Z) - Revealing quantum effects in bosonic Josephson junctions: a
multi-configuration atomic coherent states approach [1.450405446885067]
We show that quantum effects beyond the mean-field approximation are easily uncovered.
The number of variational trajectories needed for good agreement with full quantum results is orders of magnitude smaller than in the semiclassical case.
arXiv Detail & Related papers (2023-02-10T16:10:20Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum nonreciprocal interactions via dissipative gauge symmetry [18.218574433422535]
One-way nonreciprocal interactions between two quantum systems are typically described by a cascaded quantum master equation.
We present a new approach for obtaining nonreciprocal quantum interactions that is completely distinct from cascaded quantum systems.
arXiv Detail & Related papers (2022-03-17T15:34:40Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Expectation Synchronization Synthesis in Non-Markovian Open Quantum
Systems [15.285806487845036]
We investigate the problem of engineering synchronization in non-Markovian quantum systems.
For two homogenous subsystems, synchronization can always be synthesized without designing direct Hamiltonian coupling.
System parameters are explicitly designed to achieve quantum synchronization.
arXiv Detail & Related papers (2021-01-04T08:46:25Z) - Information Fluctuation Theorem for an Open Quantum Bipartite System [7.794211366198158]
We study an arbitrary non-equilibrium dynamics of a quantum bipartite system coupled to a reservoir.
We designate the local and the global states altogether in the time-forward and the time-reversed transition probabilities.
arXiv Detail & Related papers (2020-05-21T08:52:49Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z) - Non-destructively probing the thermodynamics of quantum systems with
qumodes [0.6144680854063939]
In quantum systems there is often a destruction of the system itself due to the means of measurement.
One approach to circumventing this is the use of ancillary probes that couple to the system under investigation.
We highlight means by which continuous variable quantum modes (qumodes) can be employed to probe the thermodynamics of quantum systems in and out of equilibrium.
arXiv Detail & Related papers (2017-07-13T17:57:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.