Euclidean-Monte-Carlo-informed ground-state preparation for quantum simulation of scalar field theory
- URL: http://arxiv.org/abs/2506.02313v1
- Date: Mon, 02 Jun 2025 23:02:45 GMT
- Title: Euclidean-Monte-Carlo-informed ground-state preparation for quantum simulation of scalar field theory
- Authors: Navya Gupta, Christopher David White, Zohreh Davoudi,
- Abstract summary: We present a fully classical pipeline for generating efficient quantum circuits for preparing the ground state of a quantum field theory in 1+1 dimensions.<n>The work opens the way to systematically applying classically obtained knowledge of states to prepare accurate initial states in quantum field of theories of interest in nature.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum simulators offer great potential for investigating dynamical properties of quantum field theories. However, preparing accurate non-trivial initial states for these simulations is challenging. Classical Euclidean-time Monte-Carlo methods provide a wealth of information about states of interest to quantum simulations. Thus, it is desirable to facilitate state preparation on quantum simulators using this information. To this end, we present a fully classical pipeline for generating efficient quantum circuits for preparing the ground state of an interacting scalar field theory in 1+1 dimensions. The first element of this pipeline is a variational ansatz family based on the stellar hierarchy for bosonic quantum systems. The second element of this pipeline is the classical moment-optimization procedure that augments the standard variational energy minimization by penalizing deviations in selected sets of ground-state correlation functions (i.e., moments). The values of ground-state moments are sourced from classical Euclidean methods. The resulting states yield comparable ground-state energy estimates but exhibit distinct correlations and local non-Gaussianity. The third element of this pipeline is translating the moment-optimized ansatz into an efficient quantum circuit with an asymptotic cost that is polynomial in system size. This work opens the way to systematically applying classically obtained knowledge of states to prepare accurate initial states in quantum field theories of interest in nature.
Related papers
- Entanglement renormalization circuits for $2d$ Gaussian Fermion States [0.0]
This work introduces a quantum circuit compression algorithm for Gaussian fermion states based on the multi-scale entanglement renormalization ansatz (MERA)<n>The algorithm is shown to accurately capture area-law entangled states including topologically trivial insulators, Chern insulators, and critical Dirac semimetals.<n>We also develop a novel fermion-to-qubit encoding scheme, based on an expanding $2d$ topological order, that enables implementing fermionic rotations via qubit Pauli rotations with constant Pauli weight independent of system size.
arXiv Detail & Related papers (2025-06-04T17:44:17Z) - Minimally Entangled Typical Thermal States for Classical and Quantum Simulation of 1+1-Dimensional $\mathbb Z_2$ Lattice Gauge Theory at Finite Temperature and Density [0.0]
Simulating strongly coupled gauge theories at finite temperature and density is a longstanding challenge in nuclear and high-energy physics.<n>We use minimally entangled typical thermal state (METTS) approaches to facilitate both classical and quantum computational studies.<n>Our work sets the stage for future studies of strongly coupled gauge theories with both classical and quantum hardware.
arXiv Detail & Related papers (2024-07-16T17:44:01Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Scalable Quantum Ground State Preparation of the Heisenberg Model: A
Variational Quantum Eigensolver Approach [0.0]
Variational Quantumsolver (VQE) algorithm is a system composed of a quantum circuit and a classical Eigenational Quantumsolver.
We present an ansatz capable of preparing the ground states for all possible values of the coupling, including the critical states for the anisotropic XXZ model.
arXiv Detail & Related papers (2023-08-23T09:26:34Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Orbital Expansion Variational Quantum Eigensolver: Enabling Efficient
Simulation of Molecules with Shallow Quantum Circuit [0.5541644538483947]
Variational Quantum Eigensolver (VQE) is a promising method to study ground state properties in quantum chemistry, materials science, and condensed physics.
Here, we propose an Orbital Expansion VQE(OE-VQE) framework to construct an efficient convergence path.
The path starts from a highly correlated compact active space and rapidly expands and converges to the ground state, enabling ground states with much shallower quantum circuits.
arXiv Detail & Related papers (2022-10-13T10:47:01Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Quantum-classical entropy analysis for nonlinearly-coupled
continuous-variable bipartite systems [0.0]
We investigate the behavior of classical analogs arising upon the removal of interference traits.
By comparing the quantum and classical entropy values, it is shown that, instead of entanglement production, such entropies rather provide us with information.
arXiv Detail & Related papers (2021-11-19T11:39:15Z) - Field moment expansion method for interacting Bosonic systems [0.22940141855172036]
We introduce a numerical method that simulates quantum systems initially well approximated by mean field theory.
We call this the field moment expansion method.
We investigate the accuracy of the field moment expansion using a number of well studied quantum test problems.
arXiv Detail & Related papers (2021-08-19T16:29:21Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.