Towards In-the-wild 3D Plane Reconstruction from a Single Image
- URL: http://arxiv.org/abs/2506.02493v1
- Date: Tue, 03 Jun 2025 06:14:05 GMT
- Title: Towards In-the-wild 3D Plane Reconstruction from a Single Image
- Authors: Jiachen Liu, Rui Yu, Sili Chen, Sharon X. Huang, Hengkai Guo,
- Abstract summary: 3D plane reconstruction from a single image is a crucial yet challenging topic in 3D computer vision.<n>Previous state-of-the-art methods have focused on training their system on a single dataset from either indoor or outdoor domain.<n>We introduce a novel framework dubbed ZeroPlane, a Transformer-based model targeting zero-shot 3D plane detection and reconstruction from a single image.
- Score: 16.857296782216206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D plane reconstruction from a single image is a crucial yet challenging topic in 3D computer vision. Previous state-of-the-art (SOTA) methods have focused on training their system on a single dataset from either indoor or outdoor domain, limiting their generalizability across diverse testing data. In this work, we introduce a novel framework dubbed ZeroPlane, a Transformer-based model targeting zero-shot 3D plane detection and reconstruction from a single image, over diverse domains and environments. To enable data-driven models across multiple domains, we have curated a large-scale planar benchmark, comprising over 14 datasets and 560,000 high-resolution, dense planar annotations for diverse indoor and outdoor scenes. To address the challenge of achieving desirable planar geometry on multi-dataset training, we propose to disentangle the representation of plane normal and offset, and employ an exemplar-guided, classification-then-regression paradigm to learn plane and offset respectively. Additionally, we employ advanced backbones as image encoder, and present an effective pixel-geometry-enhanced plane embedding module to further facilitate planar reconstruction. Extensive experiments across multiple zero-shot evaluation datasets have demonstrated that our approach significantly outperforms previous methods on both reconstruction accuracy and generalizability, especially over in-the-wild data. Our code and data are available at: https://github.com/jcliu0428/ZeroPlane.
Related papers
- Zero-shot Inexact CAD Model Alignment from a Single Image [53.37898107159792]
A practical approach to infer 3D scene structure from a single image is to retrieve a closely matching 3D model from a database and align it with the object in the image.<n>Existing methods rely on supervised training with images and pose annotations, which limits them to a narrow set of object categories.<n>We propose a weakly supervised 9-DoF alignment method for inexact 3D models that requires no pose annotations and generalizes to unseen categories.
arXiv Detail & Related papers (2025-07-04T04:46:59Z) - AerialMegaDepth: Learning Aerial-Ground Reconstruction and View Synthesis [57.249817395828174]
We propose a scalable framework combining pseudo-synthetic renderings from 3D city-wide meshes with real, ground-level crowd-sourced images.<n>The pseudo-synthetic data simulates a wide range of aerial viewpoints, while the real, crowd-sourced images help improve visual fidelity for ground-level images.<n>Using this hybrid dataset, we fine-tune several state-of-the-art algorithms and achieve significant improvements on real-world, zero-shot aerial-ground tasks.
arXiv Detail & Related papers (2025-04-17T17:57:05Z) - Unposed Sparse Views Room Layout Reconstruction in the Age of Pretrain Model [15.892685514932323]
We introduce Plane-DUSt3R, a novel method for multi-view room layout estimation.<n>Plane-DUSt3R incorporates the DUSt3R framework and fine-tunes on a room layout dataset (Structure3D) with a modified objective to estimate structural planes.<n>By generating uniform and parsimonious results, Plane-DUSt3R enables room layout estimation with only a single post-processing step and 2D detection results.
arXiv Detail & Related papers (2025-02-24T02:14:19Z) - MonoPlane: Exploiting Monocular Geometric Cues for Generalizable 3D Plane Reconstruction [37.481945507799594]
This paper presents a generalizable 3D plane detection and reconstruction framework named MonoPlane.
We first leverage large-scale pre-trained neural networks to obtain the depth and surface normals from a single image.
These monocular geometric cues are then incorporated into a proximity-guided RANSAC framework to sequentially fit each plane instance.
arXiv Detail & Related papers (2024-11-02T12:15:29Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - UniPlane: Unified Plane Detection and Reconstruction from Posed Monocular Videos [12.328095228008893]
We present UniPlane, a novel method that unifies plane detection and reconstruction from posed monocular videos.
We build a Transformers-based deep neural network that jointly constructs a 3D feature volume for the environment.
Experiments on real-world datasets demonstrate that UniPlane outperforms state-of-the-art methods in both plane detection and reconstruction tasks.
arXiv Detail & Related papers (2024-07-04T03:02:27Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
We propose a learning framework that trains models to predict geometry-preserving depth without requiring extra data or annotations.
Comprehensive experiments underscore our framework's superior generalization capabilities.
Our innovative loss functions empower the model to autonomously recover domain-specific scale-and-shift coefficients.
arXiv Detail & Related papers (2023-09-18T12:36:39Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
Single-view 3D Mesh Reconstruction is a fundamental computer vision task that aims at recovering 3D shapes from single-view RGB images.
This paper tackles Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories.
We propose an end-to-end two-stage network, GenMesh, to break the category boundaries in reconstruction.
arXiv Detail & Related papers (2022-08-04T14:13:35Z) - PlanarRecon: Real-time 3D Plane Detection and Reconstruction from Posed
Monocular Videos [32.286637700503995]
PlanarRecon is a framework for globally coherent detection and reconstruction of 3D planes from a posed monocular video.
A learning-based tracking and fusion module is designed to merge planes from previous fragments to form a coherent global plane reconstruction.
Experiments show that the proposed approach achieves state-of-the-art performances on the ScanNet dataset while being real-time.
arXiv Detail & Related papers (2022-06-15T17:59:16Z) - Simple and Effective Synthesis of Indoor 3D Scenes [78.95697556834536]
We study the problem of immersive 3D indoor scenes from one or more images.
Our aim is to generate high-resolution images and videos from novel viewpoints.
We propose an image-to-image GAN that maps directly from reprojections of incomplete point clouds to full high-resolution RGB-D images.
arXiv Detail & Related papers (2022-04-06T17:54:46Z) - Ground material classification and for UAV-based photogrammetric 3D data
A 2D-3D Hybrid Approach [1.3359609092684614]
In recent years, photogrammetry has been widely used in many areas to create 3D virtual data representing the physical environment.
These cutting-edge technologies have caught the US Army and Navy's attention for the purpose of rapid 3D battlefield reconstruction, virtual training, and simulations.
arXiv Detail & Related papers (2021-09-24T22:29:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.