Privacy-Preserving Federated Convex Optimization: Balancing Partial-Participation and Efficiency via Noise Cancellation
- URL: http://arxiv.org/abs/2506.02563v1
- Date: Tue, 03 Jun 2025 07:48:35 GMT
- Title: Privacy-Preserving Federated Convex Optimization: Balancing Partial-Participation and Efficiency via Noise Cancellation
- Authors: Roie Reshef, Kfir Yehuda Levy,
- Abstract summary: This paper tackles the challenge of achieving Differential Privacy (DP) in Federated Learning (FL) under partial-participation.<n>We introduce a novel noise-cancellation mechanism that preserves privacy without sacrificing convergence rates or computational efficiency.<n>This work expands the applicability of DP in FL, offering an efficient and practical solution for privacy-preserving learning in distributed systems with partial participation.
- Score: 5.524804393257921
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper tackles the challenge of achieving Differential Privacy (DP) in Federated Learning (FL) under partial-participation, where only a subset of the machines participate in each time-step. While previous work achieved optimal performance in full-participation settings, these methods struggled to extend to partial-participation scenarios. Our approach fills this gap by introducing a novel noise-cancellation mechanism that preserves privacy without sacrificing convergence rates or computational efficiency. We analyze our method within the Stochastic Convex Optimization (SCO) framework and show that it delivers optimal performance for both homogeneous and heterogeneous data distributions. This work expands the applicability of DP in FL, offering an efficient and practical solution for privacy-preserving learning in distributed systems with partial participation.
Related papers
- Stochastic Optimization with Optimal Importance Sampling [49.484190237840714]
We propose an iterative-based algorithm that jointly updates the decision and the IS distribution without requiring time-scale separation between the two.<n>Our method achieves the lowest possible variable variance and guarantees global convergence under convexity of the objective and mild assumptions on the IS distribution family.
arXiv Detail & Related papers (2025-04-04T16:10:18Z) - Linear-Time User-Level DP-SCO via Robust Statistics [55.350093142673316]
User-level differentially private convex optimization (DP-SCO) has garnered significant attention due to the importance of safeguarding user privacy in machine learning applications.<n>Current methods, such as those based on differentially private gradient descent (DP-SGD), often struggle with high noise accumulation and suboptimal utility.<n>We introduce a novel linear-time algorithm that leverages robust statistics, specifically the median and trimmed mean, to overcome these challenges.
arXiv Detail & Related papers (2025-02-13T02:05:45Z) - Private and Federated Stochastic Convex Optimization: Efficient Strategies for Centralized Systems [8.419845742978985]
This paper addresses the challenge of preserving privacy in Federated Learning (FL) within centralized systems.
We devise methods that ensure Differential Privacy (DP) while maintaining optimal convergence rates for homogeneous and heterogeneous data distributions.
arXiv Detail & Related papers (2024-07-17T08:19:58Z) - Implicit Diffusion: Efficient Optimization through Stochastic Sampling [46.049117719591635]
We present a new algorithm to optimize distributions defined implicitly by parameterized diffusions.<n>We introduce a general framework for first-order optimization of these processes, that performs jointly.<n>We apply it to training energy-based models and finetuning denoising diffusions.
arXiv Detail & Related papers (2024-02-08T08:00:11Z) - Enhancing Trade-offs in Privacy, Utility, and Computational Efficiency through MUltistage Sampling Technique (MUST) [3.0939420223851446]
We propose a class of subsampling methods for privacy amplification (PA)
We conduct comprehensive analyses of the PA effects and utility for several 2-stage MUST procedures.
We provide the privacy loss composition analysis over repeated applications of MUST.
arXiv Detail & Related papers (2023-12-20T19:38:29Z) - Adaptive Differentially Quantized Subspace Perturbation (ADQSP): A Unified Framework for Privacy-Preserving Distributed Average Consensus [6.364764301218972]
We propose a general approach named adaptive differentially quantized subspace (ADQSP)
We show that by varying a single quantization parameter the proposed method can vary between SMPC-type performances and DP-type performances.
Our results show the potential of exploiting traditional distributed signal processing tools for providing cryptographic guarantees.
arXiv Detail & Related papers (2023-12-13T07:52:16Z) - Measurement Simplification in ρ-POMDP with Performance Guarantees [6.129902017281406]
Decision making under uncertainty is at the heart of any autonomous system acting with imperfect information.
This paper introduces a novel approach to efficient decision-making, by partitioning the high-dimensional observation space.
We show that the bounds are adaptive, computationally efficient, and that they converge to the original solution.
arXiv Detail & Related papers (2023-09-19T15:40:42Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
We propose FedLAP-DP, a novel privacy-preserving approach for federated learning.
A formal privacy analysis demonstrates that FedLAP-DP incurs the same privacy costs as typical gradient-sharing schemes.
Our approach presents a faster convergence speed compared to typical gradient-sharing methods.
arXiv Detail & Related papers (2023-02-02T12:56:46Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
clustering clusters (FedC) problem aims to accurately partition unlabeled data samples distributed over massive clients into finite clients under the orchestration of a server.
We propose a novel FedC algorithm using differential privacy convergence technique, referred to as DP-Fed, in which partial participation and multiple clients are also considered.
Various attributes of the proposed DP-Fed are obtained through theoretical analyses of privacy protection, especially for the case of non-identically and independently distributed (non-i.i.d.) data.
arXiv Detail & Related papers (2023-01-03T05:38:43Z) - Contextual Model Aggregation for Fast and Robust Federated Learning in
Edge Computing [88.76112371510999]
Federated learning is a prime candidate for distributed machine learning at the network edge.
Existing algorithms face issues with slow convergence and/or robustness of performance.
We propose a contextual aggregation scheme that achieves the optimal context-dependent bound on loss reduction.
arXiv Detail & Related papers (2022-03-23T21:42:31Z) - Differentially Private Federated Bayesian Optimization with Distributed
Exploration [48.9049546219643]
We introduce differential privacy (DP) into the training of deep neural networks through a general framework for adding DP to iterative algorithms.
We show that DP-FTS-DE achieves high utility (competitive performance) with a strong privacy guarantee.
We also use real-world experiments to show that DP-FTS-DE induces a trade-off between privacy and utility.
arXiv Detail & Related papers (2021-10-27T04:11:06Z) - FedDANE: A Federated Newton-Type Method [49.9423212899788]
Federated learning aims to jointly learn low statistical models over massively distributed datasets.
We propose FedDANE, an optimization that we adapt from DANE, to handle federated learning.
arXiv Detail & Related papers (2020-01-07T07:44:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.