論文の概要: Synthetic Speech Source Tracing using Metric Learning
- arxiv url: http://arxiv.org/abs/2506.02590v1
- Date: Tue, 03 Jun 2025 08:12:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:35.471822
- Title: Synthetic Speech Source Tracing using Metric Learning
- Title(参考訳): メトリラーニングを用いた合成音声音源追跡
- Authors: Dimitrios Koutsianos, Stavros Zacharopoulos, Yannis Panagakis, Themos Stafylakis,
- Abstract要約: 本稿では,話者認識に触発されたパイプラインによる音声の操作を支援する合成音声識別システムにおける音源追跡について述べる。
分類ベースとメートル法学習の2つのアプローチを評価する。
その結果、ResNetはメトリック学習アプローチと競合し、SSLベースのシステムを超えていることがわかった。
- 参考スコア(独自算出の注目度): 18.16033398335838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses source tracing in synthetic speech-identifying generative systems behind manipulated audio via speaker recognition-inspired pipelines. While prior work focuses on spoofing detection, source tracing lacks robust solutions. We evaluate two approaches: classification-based and metric-learning. We tested our methods on the MLAADv5 benchmark using ResNet and self-supervised learning (SSL) backbones. The results show that ResNet achieves competitive performance with the metric learning approach, matching and even exceeding SSL-based systems. Our work demonstrates ResNet's viability for source tracing while underscoring the need to optimize SSL representations for this task. Our work bridges speaker recognition methodologies with audio forensic challenges, offering new directions for combating synthetic media manipulation.
- Abstract(参考訳): 本稿では,話者認識に触発されたパイプラインによる音声の操作を支援する合成音声識別システムにおける音源追跡について述べる。
以前の作業ではスプーフィング検出に重点を置いていたが、ソーストレースには堅牢なソリューションが欠如している。
分類ベースとメートル法学習の2つのアプローチを評価する。
我々は、ResNetと自己教師型学習(SSL)バックボーンを用いて、MLAADv5ベンチマークで手法を検証した。
その結果、ResNetはメトリック学習アプローチと競合し、SSLベースのシステムを超えていることがわかった。
我々の研究は、このタスクのためにSSL表現を最適化する必要性を強調しつつ、ソーストレースに対するResNetの可能性を実証している。
我々の研究は、話者認識手法と音声法医学的課題を橋渡しし、合成メディア操作と戦うための新たな方向を提供する。
関連論文リスト
- Qifusion-Net: Layer-adapted Stream/Non-stream Model for End-to-End Multi-Accent Speech Recognition [1.0690007351232649]
本稿では,ターゲットアクセントに関する事前知識を必要としないQifusion-Netと呼ばれる層適応核融合モデルを提案する。
実験の結果,提案手法は,複数のアクセントテストデータセットに対して,22.1$%と17.2$%の文字誤り率(CER)を相対的に低減し,ベースラインを上回った。
論文 参考訳(メタデータ) (2024-07-03T11:35:52Z) - Mispronunciation detection using self-supervised speech representations [10.010024759851142]
本稿では,第2言語学習者の誤発音検出作業におけるSSLモデルの利用について検討する。
そこで本研究では,1)母国英語データを用いた音声認識モデルの訓練,2)非母国英語データを用いた目標タスクのためのモデルを直接訓練する,という2つのダウンストリームアプローチを比較した。
論文 参考訳(メタデータ) (2023-07-30T21:20:58Z) - A Vector Quantized Approach for Text to Speech Synthesis on Real-World
Spontaneous Speech [94.64927912924087]
我々は、YouTubeやポッドキャストから現実の音声を使ってTSシステムを訓練する。
最近のText-to-Speechアーキテクチャは、複数のコード生成とモノトニックアライメントのために設計されている。
近年のテキスト・トゥ・スペーチ・アーキテクチャは,いくつかの客観的・主観的尺度において,既存のTSシステムより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-08T17:34:32Z) - Self-Supervised Learning for Speech Enhancement through Synthesis [5.924928860260821]
そこで本研究では,ボコーダが雑音表現を受け入れ,クリーンな音声を直接合成する方法を学習する,デノナイズドボコーダ(DeVo)アプローチを提案する。
10msのレイテンシとパフォーマンスの低下を最小限に抑えながら,ストリーミングオーディオ上で動作可能な因果バージョンを実証した。
論文 参考訳(メタデータ) (2022-11-04T16:06:56Z) - SLICER: Learning universal audio representations using low-resource
self-supervised pre-training [53.06337011259031]
ラベルなし音声データに事前学習エンコーダを組み込むための自己指導型学習手法を提案する。
我々の主な目的は、多種多様な音声および非音声タスクにまたがる一般化が可能な音声表現を学習することである。
論文 参考訳(メタデータ) (2022-11-02T23:45:33Z) - Separate What You Describe: Language-Queried Audio Source Separation [53.65665794338574]
言語問合せ音声ソース分離(LASS)の課題について紹介する。
LASSは、ターゲットソースの自然言語クエリに基づいて、ターゲットソースをオーディオミックスから分離することを目的としている。
本稿では,音響情報と言語情報を協調処理するエンドツーエンドニューラルネットワークLASS-Netを提案する。
論文 参考訳(メタデータ) (2022-03-28T23:47:57Z) - Self-Supervised Learning for speech recognition with Intermediate layer
supervision [52.93758711230248]
自己教師付き学習(ILS-SSL)のための中間層スーパービジョンを提案する。
ILS-SSLは、中間層にSSL損失を追加することで、可能な限りコンテンツ情報に集中させます。
LibriSpeech の他のテストセットの実験により,本手法は HuBERT を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-12-16T10:45:05Z) - StutterNet: Stuttering Detection Using Time Delay Neural Network [9.726119468893721]
本稿では,新しい深層学習に基づく発話検出システムstutternetについて述べる。
我々は、分散発話の文脈的側面を捉えるのに適した時間遅延ニューラルネットワーク(TDNN)を用いる。
提案手法は,有望な結果を達成し,最先端の残差ニューラルネットワーク法より優れる。
論文 参考訳(メタデータ) (2021-05-12T11:36:01Z) - LeBenchmark: A Reproducible Framework for Assessing Self-Supervised
Representation Learning from Speech [63.84741259993937]
膨大なラベルのないデータを用いた自己教師付き学習(SSL)は、画像処理と自然言語処理に成功している。
最近の研究では、音声からSSLも調べた。
音声からSSLを評価する再現可能なフレームワークであるLeBenchmarkを提案する。
論文 参考訳(メタデータ) (2021-04-23T08:27:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。