Diffusion-NPO: Negative Preference Optimization for Better Preference Aligned Generation of Diffusion Models
- URL: http://arxiv.org/abs/2505.11245v1
- Date: Fri, 16 May 2025 13:38:23 GMT
- Title: Diffusion-NPO: Negative Preference Optimization for Better Preference Aligned Generation of Diffusion Models
- Authors: Fu-Yun Wang, Yunhao Shui, Jingtan Piao, Keqiang Sun, Hongsheng Li,
- Abstract summary: We argue that existing preference alignment methods neglect the critical role of handling unconditional/negative-conditional outputs.<n>We propose a straightforward but versatile effective approach that involves training a model specifically attuned to negative preferences.<n>Our approach integrates seamlessly with models such as SD1.5, SDXL, video diffusion models and models that have undergone preference optimization.
- Score: 32.586647934400105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have made substantial advances in image generation, yet models trained on large, unfiltered datasets often yield outputs misaligned with human preferences. Numerous methods have been proposed to fine-tune pre-trained diffusion models, achieving notable improvements in aligning generated outputs with human preferences. However, we argue that existing preference alignment methods neglect the critical role of handling unconditional/negative-conditional outputs, leading to a diminished capacity to avoid generating undesirable outcomes. This oversight limits the efficacy of classifier-free guidance~(CFG), which relies on the contrast between conditional generation and unconditional/negative-conditional generation to optimize output quality. In response, we propose a straightforward but versatile effective approach that involves training a model specifically attuned to negative preferences. This method does not require new training strategies or datasets but rather involves minor modifications to existing techniques. Our approach integrates seamlessly with models such as SD1.5, SDXL, video diffusion models and models that have undergone preference optimization, consistently enhancing their alignment with human preferences.
Related papers
- Divergence Minimization Preference Optimization for Diffusion Model Alignment [58.651951388346525]
Divergence Minimization Preference Optimization (DMPO) is a principled method for aligning diffusion models by minimizing reverse KL divergence.<n>Our results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques.<n>DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
arXiv Detail & Related papers (2025-07-10T07:57:30Z) - Smoothed Preference Optimization via ReNoise Inversion for Aligning Diffusion Models with Varied Human Preferences [13.588231827053923]
Direct Preference Optimization (DPO) aligns text-to-image (T2I) generation models with human preferences using pairwise preference data.<n>We propose SmPO-Diffusion, a novel method for modeling preference distributions to improve the DPO objective.<n>Our approach effectively mitigates issues of excessive optimization and objective misalignment present in existing methods.
arXiv Detail & Related papers (2025-06-03T09:47:22Z) - Self-NPO: Negative Preference Optimization of Diffusion Models by Simply Learning from Itself without Explicit Preference Annotations [60.143658714894336]
Diffusion models have demonstrated remarkable success in various visual generation tasks, including image, video, and 3D content generation.<n> Preference optimization (PO) is a prominent and growing area of research that aims to align these models with human preferences.<n>We introduce Self-NPO, a Negative Preference Optimization approach that learns exclusively from the model itself.
arXiv Detail & Related papers (2025-05-17T01:03:46Z) - InPO: Inversion Preference Optimization with Reparametrized DDIM for Efficient Diffusion Model Alignment [12.823734370183482]
We introduce DDIM-InPO, an efficient method for direct preference alignment of diffusion models.<n>Our approach conceptualizes diffusion model as a single-step generative model, allowing us to fine-tune the outputs of specific latent variables selectively.<n> Experimental results indicate that our DDIM-InPO achieves state-of-the-art performance with just 400 steps of fine-tuning.
arXiv Detail & Related papers (2025-03-24T08:58:49Z) - Calibrated Multi-Preference Optimization for Aligning Diffusion Models [92.90660301195396]
Calibrated Preference Optimization (CaPO) is a novel method to align text-to-image (T2I) diffusion models.<n>CaPO incorporates the general preference from multiple reward models without human annotated data.<n> Experimental results show that CaPO consistently outperforms prior methods.
arXiv Detail & Related papers (2025-02-04T18:59:23Z) - Refining Alignment Framework for Diffusion Models with Intermediate-Step Preference Ranking [50.325021634589596]
We propose a Tailored Optimization Preference (TailorPO) framework for aligning diffusion models with human preference.<n>Our approach directly ranks intermediate noisy samples based on their step-wise reward, and effectively resolves the gradient direction issues.<n> Experimental results demonstrate that our method significantly improves the model's ability to generate aesthetically pleasing and human-preferred images.
arXiv Detail & Related papers (2025-02-01T16:08:43Z) - Preference Alignment with Flow Matching [23.042382086241364]
Preference Flow Matching (PFM) is a new framework for preference-based reinforcement learning (PbRL)
It streamlines the integration of preferences into an arbitrary class of pre-trained models.
We provide theoretical insights that support our method's alignment with standard PbRL objectives.
arXiv Detail & Related papers (2024-05-30T08:16:22Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
We introduce a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL.
We demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models.
arXiv Detail & Related papers (2024-05-30T03:57:29Z) - Direct Preference Optimization With Unobserved Preference Heterogeneity [16.91835461818937]
This paper presents a new method to align generative models with varied human preferences.
We propose an Expectation-Maximization adaptation to DPO, generating a mixture of models based on latent preference types of the annotators.
Our algorithms leverage the simplicity of DPO while accommodating diverse preferences.
arXiv Detail & Related papers (2024-05-23T21:25:20Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Diffusion Model Alignment Using Direct Preference Optimization [103.2238655827797]
Diffusion-DPO is a method to align diffusion models to human preferences by directly optimizing on human comparison data.
We fine-tune the base model of the state-of-the-art Stable Diffusion XL (SDXL)-1.0 model with Diffusion-DPO.
We also develop a variant that uses AI feedback and has comparable performance to training on human preferences.
arXiv Detail & Related papers (2023-11-21T15:24:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.