Asymptotically perfect seeded graph matching without edge correlation (and applications to inference)
- URL: http://arxiv.org/abs/2506.02825v2
- Date: Wed, 02 Jul 2025 19:19:46 GMT
- Title: Asymptotically perfect seeded graph matching without edge correlation (and applications to inference)
- Authors: Tong Qi, Vera Andersson, Peter Viechnicki, Vince Lyzinski,
- Abstract summary: We present the OmniMatch algorithm for seeded multiple graph matching.<n>We demonstrate the effectiveness of our algorithm across numerous simulations and in the context of shuffled graph hypothesis testing.
- Score: 2.313664320808389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the OmniMatch algorithm for seeded multiple graph matching. In the setting of $d$-dimensional Random Dot Product Graphs (RDPG), we prove that under mild assumptions, OmniMatch with $s$ seeds asymptotically and efficiently perfectly aligns $O(s^{\alpha})$ unseeded vertices -- for $\alpha<2\wedge d/4$ -- across multiple networks even in the presence of no edge correlation. We demonstrate the effectiveness of our algorithm across numerous simulations and in the context of shuffled graph hypothesis testing. In the shuffled testing setting, testing power is lost due to the misalignment/shuffling of vertices across graphs, and we demonstrate the capacity of OmniMatch to correct for misaligned vertices prior to testing and hence recover the lost testing power. We further demonstrate the algorithm on a pair of data examples from connectomics and machine translation.
Related papers
- Optimal community detection in dense bipartite graphs [0.0]
We consider the problem of detecting a community of densely connected vertices in a high-dimensional bipartite graph of size $n_1 times n$.<n>We provide non-asymptotic upper and lower bounds on the smallest signal strength $delta*$ that is both necessary and sufficient to ensure the existence of a test with small enough type one and type two errors.<n>Our proposed tests involve a combination of hard-thresholded nonlinear statistics of the adjacency matrix, the analysis of which may be of independent interest.
arXiv Detail & Related papers (2025-05-23T20:58:55Z) - Collaborative non-parametric two-sample testing [55.98760097296213]
The goal is to identify nodes where the null hypothesis $p_v = q_v$ should be rejected.
We propose the non-parametric collaborative two-sample testing (CTST) framework that efficiently leverages the graph structure.
Our methodology integrates elements from f-divergence estimation, Kernel Methods, and Multitask Learning.
arXiv Detail & Related papers (2024-02-08T14:43:56Z) - SimMatchV2: Semi-Supervised Learning with Graph Consistency [53.31681712576555]
We introduce a new semi-supervised learning algorithm - SimMatchV2.
It formulates various consistency regularizations between labeled and unlabeled data from the graph perspective.
SimMatchV2 has been validated on multiple semi-supervised learning benchmarks.
arXiv Detail & Related papers (2023-08-13T05:56:36Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
We propose a unified graph signal sampling framework which enjoys the benefits of graph signal analysis and processing.
The key idea is to transform each user's ratings on the items to a function (signal) on the vertices of an item-item graph.
For the online setting, we develop a Bayesian extension, i.e., BGS-IMC which considers continuous random Gaussian noise in the graph Fourier domain.
arXiv Detail & Related papers (2023-02-08T08:17:43Z) - Planted Bipartite Graph Detection [13.95780443241133]
We consider the task of detecting a hidden bipartite subgraph in a given random graph.
Under the null hypothesis, the graph is a realization of an ErdHosR'enyi random graph over $n$ with edge density $q$.
Under the alternative, there exists a planted $k_mathsfR times k_mathsfL$ bipartite subgraph with edge density $p>q$.
arXiv Detail & Related papers (2023-02-07T18:18:17Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
We propose a novel non-parametric subgraph matching framework, dubbed MatchExplainer, to explore explanatory subgraphs.
It couples the target graph with other counterpart instances and identifies the most crucial joint substructure by minimizing the node corresponding-based distance.
Experiments on synthetic and real-world datasets show the effectiveness of our MatchExplainer by outperforming all state-of-the-art parametric baselines with significant margins.
arXiv Detail & Related papers (2023-01-07T05:14:45Z) - Improved High-Probability Regret for Adversarial Bandits with
Time-Varying Feedback Graphs [62.52390282012508]
We study high-probability regret bounds for adversarial $K$-armed bandits with time-varying feedback graphs over $T$ rounds.
We develop an algorithm that achieves the optimal regret $widetildemathcalO((sum_t=1Talpha_t)1/2+max_tin[T]alpha_t]$ with high probability.
We also develop the first algorithm that achieves the optimal high-probability regret bound for weakly observable graphs.
arXiv Detail & Related papers (2022-10-04T04:36:15Z) - Collaborative likelihood-ratio estimation over graphs [55.98760097296213]
Graph-based Relative Unconstrained Least-squares Importance Fitting (GRULSIF)
We develop this idea in a concrete non-parametric method that we call Graph-based Relative Unconstrained Least-squares Importance Fitting (GRULSIF)
We derive convergence rates for our collaborative approach that highlights the role played by variables such as the number of available observations per node, the size of the graph, and how accurately the graph structure encodes the similarity between tasks.
arXiv Detail & Related papers (2022-05-28T15:37:03Z) - Seeded graph matching for the correlated Gaussian Wigner model via the projected power method [5.639451539396459]
We analyse the performance of the emphprojected power method (PPM) as a emphseeded graph matching algorithm.
PPM works even in iterations of constant $sigma$, thus extending the analysis in (Mao et al. 2023) for the sparse Correlated Erdos-Renyi(CER) model to the (dense) CGW model.
arXiv Detail & Related papers (2022-04-08T14:31:26Z) - Random Subgraph Detection Using Queries [29.192695995340653]
The planted densest subgraph detection problem refers to the task of testing whether in a given (random) graph there is a subgraph that is unusually dense.
In this paper, we consider a natural variant of the above problem, where one can only observe a relatively small part of the graph using adaptive edge queries.
For this model, we determine the number of queries necessary and sufficient (accompanied with a quasi-polynomial optimal algorithm) for detecting the presence of the planted subgraph.
arXiv Detail & Related papers (2021-10-02T07:41:17Z) - Random Graph Matching with Improved Noise Robustness [2.294014185517203]
We propose a new algorithm for graph matching under probabilistic models.
Our algorithm recovers the underlying matching with high probability when $alpha le 1 / (log log n)C$.
This improves the condition $alpha le 1 / (log n)C$ achieved in previous work.
arXiv Detail & Related papers (2021-01-28T02:39:27Z) - Adversarial Linear Contextual Bandits with Graph-Structured Side
Observations [80.95090605985042]
A learning agent repeatedly chooses from a set of $K$ actions after being presented with a $d$-dimensional context vector.
The agent incurs and observes the loss of the chosen action, but also observes the losses of its neighboring actions in the observation structures.
Two efficient algorithms are developed based on textttEXP3.
arXiv Detail & Related papers (2020-12-10T15:40:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.