論文の概要: Computation- and Communication-Efficient Online FL for Resource-Constrained Aerial Vehicles
- arxiv url: http://arxiv.org/abs/2506.02972v1
- Date: Tue, 03 Jun 2025 15:06:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:09.43004
- Title: Computation- and Communication-Efficient Online FL for Resource-Constrained Aerial Vehicles
- Title(参考訳): 資源拘束型航空車両のための計算・通信効率の良いオンラインFL
- Authors: Md-Ferdous Pervej, Richeng Jin, Md Moin Uddin Chowdhury, Simran Singh, İsmail Güvenç, Huaiyu Dai,
- Abstract要約: 本稿では,連続的な知覚データの利点を生かした,計算・通信効率の高いオンライン航空連合学習(2 CEOAFL)アルゴリズムを提案する。
提案した2 CEOAFLアルゴリズムは, 計算効率と通信効率に比較して, 非計算および非定量化性能が向上することを示す。
- 参考スコア(独自算出の注目度): 31.585871402388097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Privacy-preserving distributed machine learning (ML) and aerial connected vehicle (ACV)-assisted edge computing have drawn significant attention lately. Since the onboard sensors of ACVs can capture new data as they move along their trajectories, the continual arrival of such 'newly' sensed data leads to online learning and demands carefully crafting the trajectories. Besides, as typical ACVs are inherently resource-constrained, computation- and communication-efficient ML solutions are needed. Therefore, we propose a computation- and communication-efficient online aerial federated learning (2CEOAFL) algorithm to take the benefits of continual sensed data and limited onboard resources of the ACVs. In particular, considering independently owned ACVs act as selfish data collectors, we first model their trajectories according to their respective time-varying data distributions. We then propose a 2CEOAFL algorithm that allows the flying ACVs to (a) prune the received dense ML model to make it shallow, (b) train the pruned model, and (c) probabilistically quantize and offload their trained accumulated gradients to the central server (CS). Our extensive simulation results show that the proposed 2CEOAFL algorithm delivers comparable performances to its non-pruned and nonquantized, hence, computation- and communication-inefficient counterparts.
- Abstract(参考訳): 近年,プライバシ保護型分散機械学習 (ML) と空中コネクテッドカー (ACV) を利用したエッジコンピューティングが注目されている。
ACVに搭載されているセンサーは、軌道に沿って移動するときに新しいデータをキャプチャできるため、そのような「新しい」感覚を持つデータの連続的な到着は、オンライン学習につながり、軌道を慎重に作成する必要がある。
さらに、典型的なACVは本質的にリソース制約があるため、計算効率と通信効率のよいMLソリューションが必要である。
そこで本稿では,連続的な知覚データとACVの限られたリソースの利点を生かした,計算・通信効率の高いオンライン航空連合学習(2CEOAFL)アルゴリズムを提案する。
特に、独立に所有するAVVが利己的なデータ収集者として機能することを考えると、まず、それぞれの時間変化データ分布に基づいて、その軌道をモデル化する。
次に、飛行するACVを許容する2CEOAFLアルゴリズムを提案する。
(a)受信した高密度MLモデルのプルーンは、それを浅くする。
(b)刈り取り模型を訓練し、
(c) トレーニング済みの累積勾配を中央サーバ(CS)に量子化し、オフロードする。
シミュレーションの結果,提案した2 CEOAFLアルゴリズムは,計算効率と通信効率に比較して計算性能が向上することがわかった。
関連論文リスト
- Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks [71.30914500714262]
移動エッジコンピューティング(MEC)を援用したセルフリーネットワーク上でのクロスレイヤリソース割り当ては、データレートを促進するために、送信およびコンピューティングリソースを十分に活用することができる。
深層学習の観点からMEC支援セルフリーネットワークのサブキャリア配置とビームフォーミング最適化について検討した。
論文 参考訳(メタデータ) (2024-12-21T10:18:55Z) - Model Partition and Resource Allocation for Split Learning in Vehicular Edge Networks [24.85135243655983]
本稿では,これらの課題に対処する新しいU字型分割学習(U-SFL)フレームワークを提案する。
U-SFLは、生のデータとラベルの両方をVU側に置くことで、プライバシー保護を強化することができる。
通信効率を最適化するために,送信データの次元を著しく低減する意味認識型自動エンコーダ(SAE)を導入する。
論文 参考訳(メタデータ) (2024-11-11T07:59:13Z) - Adaptive and Parallel Split Federated Learning in Vehicular Edge Computing [6.004901615052089]
車両エッジインテリジェンス(VEI)は、将来のインテリジェントトランスポートシステムを実現するための有望なパラダイムである。
フェデレートラーニング(Federated Learning, FL)は、コラボレーティブモデルトレーニングとアグリゲーションを促進する基礎技術のひとつである。
ASFV(Adaptive Split Federated Learning scheme for Vehicular Edge Computing) を開発した。
論文 参考訳(メタデータ) (2024-05-29T02:34:38Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
フェデレーションエッジインテリジェンス(FEI)システムにおけるリアルタイム機械学習について検討する。
FEIシステムは異種通信と計算資源分布を示す。
本稿では,共有MLモデルの協調学習における全体の実行時間を最小化するために,時間依存型フェデレーションラーニング(TS-FL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-26T08:13:22Z) - Federated Stochastic Gradient Descent Begets Self-Induced Momentum [151.4322255230084]
Federated Learning(FL)は、モバイルエッジシステムに適用可能な、新興の機械学習手法である。
このような条件下での勾配降下(SGD)への走行は,大域的な集約プロセスに運動量的な項を加えるとみなすことができる。
論文 参考訳(メタデータ) (2022-02-17T02:01:37Z) - Collaborative Learning over Wireless Networks: An Introductory Overview [84.09366153693361]
主に、ワイヤレスデバイス間の協調トレーニングに焦点を合わせます。
過去数十年間、多くの分散最適化アルゴリズムが開発されてきた。
データ局所性 – すなわち、各参加デバイスで利用可能なデータがローカルのままである間、共同モデルを協調的にトレーニングすることができる。
論文 参考訳(メタデータ) (2021-12-07T20:15:39Z) - Semi-asynchronous Hierarchical Federated Learning for Cooperative
Intelligent Transportation Systems [10.257042901204528]
コラボレーティブ・インテリジェント・トランスポート・システム(C-ITS)は、自動運転車や道路インフラの安全性、効率性、持続可能性、快適なサービスを提供する有望なネットワークである。
C-ITSのコンポーネントは通常大量のデータを生成するため、データサイエンスを探索することは困難である。
本稿では,C-ITSのためのSemi-a synchronous Federated Learning (SHFL) フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-18T07:44:34Z) - UAV-assisted Online Machine Learning over Multi-Tiered Networks: A
Hierarchical Nested Personalized Federated Learning Approach [25.936914508952086]
地理的分散デバイスクラスタのための無人航空機(UAV)による分散機械学習(ML)を検討する。
i)リーダー,ワーカー,コーディネータによるUAVスワーミング,(ii)階層型ネスト型パーソナライズド・フェデレーション・ラーニング(HN-PFL),(iii)UAVのローカル計算機能を用いた分散MLのための協調的UAVリソースプール,の5つの新しい技術/技術を提案する。
論文 参考訳(メタデータ) (2021-06-29T21:40:28Z) - Privacy-Preserving Federated Learning for UAV-Enabled Networks:
Learning-Based Joint Scheduling and Resource Management [45.15174235000158]
無人航空機(UAV)は、データ収集、人工知能(AI)モデルトレーニング、無線通信をサポートする飛行基地局(BS)として機能する。
モデルトレーニングのためにUAVサーバにデバイスの生データを送信するのは現実的ではない。
本稿では,マルチUAV対応ネットワークのための非同期フェデレーション学習フレームワークを開発する。
論文 参考訳(メタデータ) (2020-11-28T18:58:34Z) - Learning Centric Power Allocation for Edge Intelligence [84.16832516799289]
分散データを収集し、エッジで機械学習を実行するエッジインテリジェンスが提案されている。
本稿では,経験的分類誤差モデルに基づいて無線リソースを割り当てるLCPA法を提案する。
実験の結果,提案したLCPAアルゴリズムは,他のパワーアロケーションアルゴリズムよりも有意に優れていた。
論文 参考訳(メタデータ) (2020-07-21T07:02:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。