論文の概要: Convergence and efficiency proof of quantum imaginary time evolution for bounded order systems
- arxiv url: http://arxiv.org/abs/2506.03014v1
- Date: Tue, 03 Jun 2025 15:52:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:09.438651
- Title: Convergence and efficiency proof of quantum imaginary time evolution for bounded order systems
- Title(参考訳): 有界次数系の量子想像時間進化の収束と効率証明
- Authors: Tobias Hartung, Karl Jansen,
- Abstract要約: 想像上の時間進化は、決定的な減速を伴わずに、世界最小に収束することを保証している。
また,基礎となる物理系が有界順序であれば,任意の誤差しきい値まで効率的にコンパイルできることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many current and near-future applications of quantum computing utilise parametric families of quantum circuits and variational methods to find optimal values for these parameters. Solving a quantum computational problem with such variational methods relies on minimising some cost function, e.g., the energy of a physical system. As such, this is similar to the training process in machine learning and variational quantum simulations can therefore suffer from similar problems encountered in machine learning training. This includes non-convergence to the global minimum due to local minima as well as critical slowing down. In this article, we analyse the imaginary time evolution as a means of compiling parametric quantum circuits and finding optimal parameters, and show that it guarantees convergence to the global minimum without critical slowing down. We also show that the compilation process, including the task of finding optimal parameters, can be performed efficiently up to an arbitrary error threshold if the underlying physical system is of bounded order. This includes many relevant computational problems, e.g., local physical theories and combinatorial optimisation problems such as the flight-to-gate assignment problem. In particular, we show a priori estimates on the success probability for these combinatorial optimisation problems. There seem to be no known classical methods with similar efficiency and convergence guarantees. Meanwhile the imaginary time evolution method can be implemented on current quantum computers.
- Abstract(参考訳): 量子コンピューティングの現在および近未来の多くの応用は、量子回路のパラメトリック族と変分法を利用してこれらのパラメータの最適値を求める。
このような変分法で量子計算問題を解くには、物理系のエネルギーなど、いくつかのコスト関数を最小化することに依存する。
このように、これは機械学習のトレーニングプロセスと似ており、変動量子シミュレーションは機械学習のトレーニングで遭遇する同様の問題に悩まされる可能性がある。
これには、局所的なミニマのために世界最小値に収束しないことや、臨界的な減速が含まれる。
本稿では,パラメトリック量子回路をコンパイルし,最適パラメータを求める手段としての想像時間進化を分析し,臨界速度を低下させることなく,世界最小値への収束を保証することを示す。
また、最適パラメータを求めるタスクを含むコンパイルプロセスは、基礎となる物理系が有界順序である場合、任意のエラーしきい値まで効率的に実行可能であることを示す。
これには、例えば局所物理理論や、フライト・ツー・ゲートの割り当て問題のような組合せ最適化問題など、多くの関連する計算問題が含まれる。
特に、これらの組合せ最適化問題の成功確率に関する事前推定を示す。
類似の効率性と収束性を保証する古典的な手法は知られていないようである。
一方、現在の量子コンピュータでは、仮想時間進化法が実装できる。
関連論文リスト
- Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
ノイズは、信頼できる量子アルゴリズムを達成するための大きな障害である。
本稿では,パラメータ化量子回路分類器のロバスト性を高めるための雑音耐性学習理論とアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-05-24T02:51:34Z) - Parallel circuit implementation of variational quantum algorithms [0.0]
本稿では,変分量子アルゴリズム(VQA)の量子回路を分割し,並列トレーニングと実行を可能にする手法を提案する。
本稿では,この問題からの固有構造を同定可能な最適化問題に適用する。
我々は,本手法がより大きな問題に対処できるだけでなく,1つのスライスのみを用いてパラメータをトレーニングしながら,完全なVQAモデルを実行することもできることを示した。
論文 参考訳(メタデータ) (2023-04-06T12:52:29Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
変動量子回路のコスト関数とその分散を効率よく計算する方法を見出した。
この方法は、変分量子回路のトレーニング容易性を証明し、バレンプラトー問題を克服できる設計戦略を探索するために用いられる。
論文 参考訳(メタデータ) (2023-02-09T14:05:18Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
量子コンピューティングは、カーネルマシンが量子カーネルを利用してデータ間の類似度を表現できるようにすることで、機械学習モデルを強化することができる。
本稿では,ニューラルアーキテクチャ検索やAutoMLと同じような最適化手法を用いて,この問題に対するアプローチを提案する。
その結果、高エネルギー物理問題に対する我々のアプローチを検証した結果、最良のシナリオでは、手動設計のアプローチに関して、テストの精度を一致または改善できることが示された。
論文 参考訳(メタデータ) (2022-09-22T16:42:14Z) - Adiabatic quantum computing with parameterized quantum circuits [0.0]
本稿では,近距離デバイスに実装可能なアディベート量子コンピューティングの離散バージョンを提案する。
提案アルゴリズムと変分量子固有解器を2つの古典最適化問題で比較する。
論文 参考訳(メタデータ) (2022-06-09T09:31:57Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
変分量子古典ハイブリッドアルゴリズムは、近い将来に量子コンピュータの実用的な問題を解くための有望な戦略と見なされている。
本稿では,ベイズ空間における有望な領域を特定するために勾配を用いた高速・スローアルゴリズムを提案する。
本研究は, 量子化学, 最適化, 量子シミュレーション問題における変分量子アルゴリズムの応用に近づいたものである。
論文 参考訳(メタデータ) (2022-03-04T17:48:57Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
本稿では,ロバストフィッティングのためのハイブリッド量子古典アルゴリズムを提案する。
私たちのコアコントリビューションは、整数プログラムの列を解く、新しい堅牢な適合式である。
実際の量子コンピュータを用いて得られた結果について述べる。
論文 参考訳(メタデータ) (2022-01-25T05:59:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。