論文の概要: Zero-Shot Time Series Forecasting with Covariates via In-Context Learning
- arxiv url: http://arxiv.org/abs/2506.03128v1
- Date: Tue, 03 Jun 2025 17:56:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:35.979686
- Title: Zero-Shot Time Series Forecasting with Covariates via In-Context Learning
- Title(参考訳): 文脈内学習による共変量によるゼロショット時系列予測
- Authors: Andreas Auer, Raghul Parthipan, Pedro Mercado, Abdul Fatir Ansari, Lorenzo Stella, Bernie Wang, Michael Bohlke-Schneider, Syama Sundar Rangapuram,
- Abstract要約: 文脈内学習による共変量を利用したゼロショット予測モデルであるCOSMICを導入する。
データ不足の課題に対処するため,Informative Covariate Augmentationを提案する。
COSMICはゼロショット予測において最先端の性能を達成する。
- 参考スコア(独自算出の注目度): 8.244359401832309
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretrained time series models, capable of zero-shot forecasting, have demonstrated significant potential in enhancing both the performance and accessibility of time series forecasting. However, existing pretrained models either do not support covariates or fail to incorporate them effectively. We introduce COSMIC, a zero-shot forecasting model that utilizes covariates via in-context learning. To address the challenge of data scarcity, we propose Informative Covariate Augmentation, which enables the training of COSMIC without requiring any datasets that include covariates. COSMIC achieves state-of-the-art performance in zero-shot forecasting, both with and without covariates. Our quantitative and qualitative analysis demonstrates that COSMIC effectively leverages covariates in zero-shot forecasting.
- Abstract(参考訳): ゼロショット予測が可能な事前訓練された時系列モデルは、時系列予測の性能とアクセシビリティの両方を向上する大きな可能性を示している。
しかし、既存の事前訓練されたモデルは共変量をサポートしていないか、効果的にそれらを組み込むことができない。
文脈内学習による共変量を利用したゼロショット予測モデルであるCOSMICを導入する。
データ不足の課題に対処するために、共変量を含むデータセットを必要とせずにCOSMICのトレーニングを可能にするInformative Covariate Augmentationを提案する。
COSMICは、共変量と無変量の両方でゼロショット予測において最先端の性能を達成する。
定量的および定性的分析により,COSMICはゼロショット予測において共変量を有効に活用していることが示された。
関連論文リスト
- ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables [30.679739751673655]
本稿では,事前学習した時系列予測モデルに共変量を統合する新しい手法を提案する。
提案手法は,モジュールブロックによる事前学習予測モデルに共変量情報を組み込む。
本手法は,合成データと実データの両方の評価において,事前学習されたモデルに共変量情報を効果的に組み込むことで,既存のベースラインを上回ります。
論文 参考訳(メタデータ) (2025-03-15T12:34:19Z) - Predicting Bad Goods Risk Scores with ARIMA Time Series: A Novel Risk Assessment Approach [0.0]
本研究は,時系列予測後の粗悪品の計算を目的とした独自式と時系列ARIMAモデルを統合した新しいフレームワークを提案する。
有機ビールG1リッターの2022-2024のデータセット上で実験結果が検証され、提案手法が従来の統計モデルより優れていることが示された。
論文 参考訳(メタデータ) (2025-02-23T09:52:11Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - ReAugment: Model Zoo-Guided RL for Few-Shot Time Series Augmentation and Forecasting [74.00765474305288]
本稿では,時系列データ拡張のための強化学習(RL)の試験的検討を行う。
我々の手法であるReAugmentは、トレーニングセットのどの部分が拡張されるべきか、どのように拡張を行うべきか、RLがプロセスにどのような利点をもたらすのか、という3つの重要な問題に取り組む。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Ensemble Prediction via Covariate-dependent Stacking [0.0]
本研究は,CDST (Co-dependent stacking') という,アンサンブル予測の新しい手法を提案する。
従来の積み重ね方式とは異なり、CDSTはモデルウェイトを共変量の関数として柔軟に変化させ、複雑なシナリオにおける予測性能を向上させる。
以上の結果から,CDSTは時間的・時間的予測の問題に特に有用であり,様々なデータ分析分野の研究者や実践者にとって強力なツールとなることが示唆された。
論文 参考訳(メタデータ) (2024-08-19T07:31:31Z) - Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
本稿では,時系列間の相関を利用して時系列間の構造を学習し,精度の高い正確な予測を行うSTOICを紹介する。
幅広いベンチマークデータセットに対して、STOICは16%の精度とキャリブレーションのよい予測を提供する。
論文 参考訳(メタデータ) (2024-07-02T20:14:32Z) - Evaluating the effectiveness of predicting covariates in LSTM Networks for Time Series Forecasting [0.0]
本稿では,長期予測地平線に対して単純かつ極めて効果的であるRNNアーキテクチャと組み合わせた季節時間セグメントを用いた新しい手法を提案する。
その結果, ある条件下では, 目標変数と共変する条件下では, モデル全体の性能が向上することが判明した。
論文 参考訳(メタデータ) (2024-04-29T09:51:25Z) - Pessimistic Q-Learning for Offline Reinforcement Learning: Towards
Optimal Sample Complexity [51.476337785345436]
有限水平マルコフ決定過程の文脈におけるQ-ラーニングの悲観的変種について検討する。
ほぼ最適サンプル複雑性を実現するために,分散再現型悲観的Q-ラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-28T15:39:36Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。