UniSim: A Unified Simulator for Time-Coarsened Dynamics of Biomolecules
- URL: http://arxiv.org/abs/2506.03157v2
- Date: Thu, 05 Jun 2025 07:10:52 GMT
- Title: UniSim: A Unified Simulator for Time-Coarsened Dynamics of Biomolecules
- Authors: Ziyang Yu, Wenbing Huang, Yang Liu,
- Abstract summary: We propose textbfUnified bfSimulator (UniSim), which leverages cross-domain knowledge to enhance the understanding of atomic interactions.<n>UniSim achieves highly competitive performance across small molecules, peptides, and proteins.
- Score: 17.559471937824767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular Dynamics (MD) simulations are essential for understanding the atomic-level behavior of molecular systems, giving insights into their transitions and interactions. However, classical MD techniques are limited by the trade-off between accuracy and efficiency, while recent deep learning-based improvements have mostly focused on single-domain molecules, lacking transferability to unfamiliar molecular systems. Therefore, we propose \textbf{Uni}fied \textbf{Sim}ulator (UniSim), which leverages cross-domain knowledge to enhance the understanding of atomic interactions. First, we employ a multi-head pretraining approach to learn a unified atomic representation model from a large and diverse set of molecular data. Then, based on the stochastic interpolant framework, we learn the state transition patterns over long timesteps from MD trajectories, and introduce a force guidance module for rapidly adapting to different chemical environments. Our experiments demonstrate that UniSim achieves highly competitive performance across small molecules, peptides, and proteins.
Related papers
- BoostMD: Accelerating molecular sampling by leveraging ML force field features from previous time-steps [3.8214695776749013]
BoostMD is a surrogate model architecture designed to accelerate molecular dynamics simulations.<n>Our experiments demonstrate that BoostMD achieves an eight-fold speedup compared to the reference model.<n>By combining efficient feature reuse with a streamlined architecture, BoostMD offers a robust solution for conducting large-scale, long-timescale molecular simulations.
arXiv Detail & Related papers (2024-12-21T20:52:36Z) - Graph Fourier Neural ODEs: Modeling Spatial-temporal Multi-scales in Molecular Dynamics [38.53044197103943]
GF-NODE integrates a graph Fourier transform for spatial frequency decomposition with a Neural ODE framework for continuous-time evolution.<n>We show that GF-NODE achieves state-of-the-art accuracy while preserving essential geometrical features over extended simulations.<n>These findings highlight the promise of bridging spectral decomposition with continuous-time modeling to improve the robustness and predictive power of MD simulations.
arXiv Detail & Related papers (2024-11-03T15:10:48Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of Peptides [17.559471937824767]
We propose a conditional generative model called Force-guided Bridge Matching (FBM)<n>FBM learns full-atom time-coarsened dynamics and targets the Boltzmann-constrained distribution.<n> Experiments on two datasets consisting of peptides verify our superiority in terms of comprehensive metrics.
arXiv Detail & Related papers (2024-08-27T15:07:27Z) - UniIF: Unified Molecule Inverse Folding [67.60267592514381]
We propose a unified model UniIF for inverse folding of all molecules.
Our proposed method surpasses state-of-the-art methods on all tasks.
arXiv Detail & Related papers (2024-05-29T10:26:16Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
We introduce Hierarchical textual Inversion for Molecular generation (HI-Mol), a novel data-efficient molecular generation method.
HI-Mol is inspired by the importance of hierarchical information, e.g., both coarse- and fine-grained features, in understanding the molecule distribution.
Compared to the conventional textual inversion method in the image domain using a single-level token embedding, our multi-level token embeddings allow the model to effectively learn the underlying low-shot molecule distribution.
arXiv Detail & Related papers (2024-05-05T08:35:23Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Transferring Chemical and Energetic Knowledge Between Molecular Systems
with Machine Learning [5.27145343046974]
We propose a novel methodology for transferring knowledge obtained from simple molecular systems to a more complex one.
We focus on the classification of high and low free-energy states.
Our results show a remarkable AUC of 0.92 for transfer learning from tri-alanine to the deca-alanine system.
arXiv Detail & Related papers (2022-05-06T16:21:00Z) - Accelerated Simulations of Molecular Systems through Learning of their
Effective Dynamics [4.276697874428501]
We present a novel framework to advance simulation by up to three orders of magnitude.
LED learns the effective dynamics of molecular systems.
We demonstrate the effectiveness of LED in the M"ueller-Brown potential, the Trp Cage protein, and the alanine dipeptide.
arXiv Detail & Related papers (2021-02-17T15:15:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.