RIS-aided Latent Space Alignment for Semantic Channel Equalization
- URL: http://arxiv.org/abs/2507.16450v2
- Date: Wed, 23 Jul 2025 08:38:58 GMT
- Title: RIS-aided Latent Space Alignment for Semantic Channel Equalization
- Authors: Tomás Hüttebräucker, Mario Edoardo Pandolfo, Simone Fiorellino, Emilio Calvanese Strinati, Paolo Di Lorenzo,
- Abstract summary: We introduce a new paradigm in wireless communications, focusing on transmitting the intended meaning rather than ensuring strict bit-level accuracy.<n>These systems often rely on Deep Neural Networks (DNNs) to learn and encode meaning directly from data, enabling more efficient communication.<n>In this work, we propose a joint physical and semantic channel equalization framework that leverages the presence of Reconfigurable Intelligent Surfaces (RIS)<n>We show that the proposed joint equalization strategies consistently outperform conventional, disjoint approaches to physical and semantic channel equalization across a broad range of scenarios and wireless channel conditions.
- Score: 10.555901476981923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic communication systems introduce a new paradigm in wireless communications, focusing on transmitting the intended meaning rather than ensuring strict bit-level accuracy. These systems often rely on Deep Neural Networks (DNNs) to learn and encode meaning directly from data, enabling more efficient communication. However, in multi-user settings where interacting agents are trained independently-without shared context or joint optimization-divergent latent representations across AI-native devices can lead to semantic mismatches, impeding mutual understanding even in the absence of traditional transmission errors. In this work, we address semantic mismatch in Multiple-Input Multiple-Output (MIMO) channels by proposing a joint physical and semantic channel equalization framework that leverages the presence of Reconfigurable Intelligent Surfaces (RIS). The semantic equalization is implemented as a sequence of transformations: (i) a pre-equalization stage at the transmitter; (ii) propagation through the RIS-aided channel; and (iii) a post-equalization stage at the receiver. We formulate the problem as a constrained Minimum Mean Squared Error (MMSE) optimization and propose two solutions: (i) a linear semantic equalization chain, and (ii) a non-linear DNN-based semantic equalizer. Both methods are designed to operate under semantic compression in the latent space and adhere to transmit power constraints. Through extensive evaluations, we show that the proposed joint equalization strategies consistently outperform conventional, disjoint approaches to physical and semantic channel equalization across a broad range of scenarios and wireless channel conditions.
Related papers
- Latent Space Alignment for AI-Native MIMO Semantic Communications [11.185200213307208]
We propose a novel approach to address semantic mismatches in semantic communications.<n>A neural network-based model learns semantic precoder/decoder under power budget and complexity constraints.<n>Results demonstrate the effectiveness of the proposed approach in a goal-oriented semantic communication scenario.
arXiv Detail & Related papers (2025-07-22T15:16:18Z) - Latent Diffusion Model Based Denoising Receiver for 6G Semantic Communication: From Stochastic Differential Theory to Application [11.385703484113552]
We propose a novel semantic communication framework empowered by generative artificial intelligence (GAI)<n>A latent diffusion model (LDM)-based semantic communication framework is proposed that combines a variational autoencoder for semantic features extraction.<n>The proposed system is a training-free framework that supports zero-shot generalization, and achieves superior performance under low-SNR and out-of-distribution conditions.
arXiv Detail & Related papers (2025-06-06T03:20:32Z) - Distributionally Robust Wireless Semantic Communication with Large AI Models [120.29419104482793]
6G wireless systems are expected to support massive volumes of data with ultra-low latency.<n> conventional bit-level transmission strategies cannot support the efficiency and adaptability required by modern, data-intensive applications.<n>The concept of semantic communication (SemCom) addresses this limitation by focusing on transmitting task-relevant semantic information instead of raw data.
arXiv Detail & Related papers (2025-05-28T04:03:57Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Latent Diffusion Model-Enabled Low-Latency Semantic Communication in the Presence of Semantic Ambiguities and Wireless Channel Noises [18.539501941328393]
This paper develops a latent diffusion model-enabled SemCom system to handle outliers in source data.<n>A lightweight single-layer latent space transformation adapter completes one-shot learning at the transmitter.<n>An end-to-end consistency distillation strategy is used to distill the diffusion models trained in latent space.
arXiv Detail & Related papers (2024-06-09T23:39:31Z) - Adaptive Resource Allocation for Semantic Communication Networks [34.189531352110386]
This paper investigates the quality of service for semantic communication networks, including the semantic quantization efficiency (SQE) and transmission latency.
A problem maximizing the overall effective SC-QoS is formulated by jointly the transmit beamforming the base station, the bits semantic representation the subchannel assignment, and the semantic resource allocation.
Our design can effectively combat semantic noise and achieve superior performance in wireless communications compared to several benchmark schemes.
arXiv Detail & Related papers (2023-12-02T09:12:12Z) - Reasoning with the Theory of Mind for Pragmatic Semantic Communication [62.87895431431273]
A pragmatic semantic communication framework is proposed in this paper.
It enables effective goal-oriented information sharing between two-intelligent agents.
Numerical evaluations demonstrate the framework's ability to achieve efficient communication with a reduced amount of bits.
arXiv Detail & Related papers (2023-11-30T03:36:19Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
Federated learning-based semantic communication (FLSC) framework for multi-task distributed image transmission with IoT devices.
Each link is composed of a hierarchical vision transformer (HVT)-based extractor and a task-adaptive translator.
Channel state information-based multiple-input multiple-output transmission module designed to combat channel fading and noise.
arXiv Detail & Related papers (2023-08-07T16:32:14Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - HSVA: Hierarchical Semantic-Visual Adaptation for Zero-Shot Learning [74.76431541169342]
Zero-shot learning (ZSL) tackles the unseen class recognition problem, transferring semantic knowledge from seen classes to unseen ones.
We propose a novel hierarchical semantic-visual adaptation (HSVA) framework to align semantic and visual domains.
Experiments on four benchmark datasets demonstrate HSVA achieves superior performance on both conventional and generalized ZSL.
arXiv Detail & Related papers (2021-09-30T14:27:50Z) - Reinforcement Learning-powered Semantic Communication via Semantic
Similarity [13.569045590522316]
We introduce a new semantic communication mechanism, whose key idea is to preserve the semantic information instead of strictly securing the bit-level precision.
We show that the commonly used bit-level metrics are vulnerable of catching important semantic meaning and structures.
We put forward a reinforcement learning (RL)-based solution which allows us to simultaneously optimize any user-defined semantic measurement.
arXiv Detail & Related papers (2021-08-27T05:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.