Farm-LightSeek: An Edge-centric Multimodal Agricultural IoT Data Analytics Framework with Lightweight LLMs
- URL: http://arxiv.org/abs/2506.03168v1
- Date: Wed, 28 May 2025 14:09:36 GMT
- Title: Farm-LightSeek: An Edge-centric Multimodal Agricultural IoT Data Analytics Framework with Lightweight LLMs
- Authors: Dawen Jiang, Zhishu Shen, Qiushi Zheng, Tiehua Zhang, Wei Xiang, Jiong Jin,
- Abstract summary: We propose Farm-LightSeek, an edge-centric multimodal agricultural IoT data analytics framework.<n>This framework collects real-time farmland multi-source data via sensors, performs cross-modal reasoning and disease detection at edge nodes, conducts low-latency management decisions.<n>Experiments conducted on two real-world datasets demonstrate that Farm-LightSeek consistently achieves reliable performance in mission-critical tasks.
- Score: 8.54781439289805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Amid the challenges posed by global population growth and climate change, traditional agricultural Internet of Things (IoT) systems is currently undergoing a significant digital transformation to facilitate efficient big data processing. While smart agriculture utilizes artificial intelligence (AI) technologies to enable precise control, it still encounters significant challenges, including excessive reliance on agricultural expert knowledge, difficulties in fusing multimodal data, poor adaptability to dynamic environments, and bottlenecks in real-time decision-making at the edge. Large language models (LLMs), with their exceptional capabilities in knowledge acquisition and semantic understanding, provide a promising solution to address these challenges. To this end, we propose Farm-LightSeek, an edge-centric multimodal agricultural IoT data analytics framework that integrates LLMs with edge computing. This framework collects real-time farmland multi-source data (images, weather, geographic information) via sensors, performs cross-modal reasoning and disease detection at edge nodes, conducts low-latency management decisions, and enables cloud collaboration for model updates. The main innovations of Farm-LightSeek include: (1) an agricultural "perception-decision-action" closed-loop architecture; (2) cross-modal adaptive monitoring; and (3)a lightweight LLM deployment strategy balancing performance and efficiency. Experiments conducted on two real-world datasets demonstrate that Farm-LightSeek consistently achieves reliable performance in mission-critical tasks, even under the limitations of edge computing resources. This work advances intelligent real-time agricultural solutions and highlights the potential for deeper integration of agricultural IoT with LLMs.
Related papers
- AI in Agriculture: A Survey of Deep Learning Techniques for Crops, Fisheries and Livestock [77.95897723270453]
Crops, fisheries and livestock form the backbone of global food production, essential to feed the ever-growing global population.<n> Addressing these issues requires efficient, accurate, and scalable technological solutions, highlighting the importance of artificial intelligence (AI)<n>This survey presents a systematic and thorough review of more than 200 research works covering conventional machine learning approaches, advanced deep learning techniques, and recent vision-language foundation models.
arXiv Detail & Related papers (2025-07-29T17:59:48Z) - TAMO:Fine-Grained Root Cause Analysis via Tool-Assisted LLM Agent with Multi-Modality Observation Data [33.5606443790794]
Large language models (LLMs) have made breakthroughs in contextual inference and domain knowledge integration.<n>We propose a tool-assisted LLM agent with multi-modality observation data, namely TAMO, for fine-grained root cause analysis.
arXiv Detail & Related papers (2025-04-29T06:50:48Z) - Multivariate Temporal Regression at Scale: A Three-Pillar Framework Combining ML, XAI, and NLP [1.331812695405053]
This paper introduces a novel framework that accelerates the discovery of actionable relationships in temporal data by integrating machine learning (ML), explainable AI (XAI), and natural language processing (NLP)<n>Our approach combines ML-driven pruning to identify and mitigate low-quality samples, XAI-based interpretability to validate critical feature interactions, and NLP for future contextual validation, reducing the time required to uncover actionable insights by 40-60%.
arXiv Detail & Related papers (2025-04-02T21:53:03Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Towards Human-Guided, Data-Centric LLM Co-Pilots [53.35493881390917]
CliMB-DC is a human-guided, data-centric framework for machine learning co-pilots.<n>It combines advanced data-centric tools with LLM-driven reasoning to enable robust, context-aware data processing.<n>We show how CliMB-DC can transform uncurated datasets into ML-ready formats.
arXiv Detail & Related papers (2025-01-17T17:51:22Z) - Agri-LLaVA: Knowledge-Infused Large Multimodal Assistant on Agricultural Pests and Diseases [49.782064512495495]
We construct the first multimodal instruction-following dataset in the agricultural domain.<n>This dataset covers over 221 types of pests and diseases with approximately 400,000 data entries.<n>We propose a knowledge-infused training method to develop Agri-LLaVA, an agricultural multimodal conversation system.
arXiv Detail & Related papers (2024-12-03T04:34:23Z) - LoRa Communication for Agriculture 4.0: Opportunities, Challenges, and Future Directions [40.08908132533476]
The emerging field of smart agriculture leverages the Internet of Things (IoT) to revolutionize farming practices.
This paper investigates the transformative potential of Long Range (LoRa) technology as a key enabler of long-range wireless communication for agricultural IoT systems.
arXiv Detail & Related papers (2024-09-17T13:55:44Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Self-Supervised Backbone Framework for Diverse Agricultural Vision Tasks [0.3683202928838613]
Computer vision in agriculture is game-changing to transform farming into a data-driven, precise, and sustainable industry.
Deep learning has empowered agriculture vision to analyze vast, complex visual data, but heavily rely on the availability of large annotated datasets.
We propose a lightweight framework utilizing SimCLR, a contrastive learning approach, to pre-train a ResNet-50 backbone on a large, unannotated dataset of real-world agriculture field images.
arXiv Detail & Related papers (2024-03-22T14:46:51Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
We introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime.
We demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators.
arXiv Detail & Related papers (2023-12-19T12:34:46Z) - Data-Centric Digital Agriculture: A Perspective [23.566985362242498]
Digital agriculture is rapidly evolving to meet increasing global demand for food, feed, fiber, and fuel.
Machine learning research in digital agriculture has predominantly focused on model-centric approaches.
To fully realize the potential of digital agriculture, it is crucial to have a comprehensive understanding of the role of data in the field.
arXiv Detail & Related papers (2023-12-06T11:38:26Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.