LoRa Communication for Agriculture 4.0: Opportunities, Challenges, and Future Directions
- URL: http://arxiv.org/abs/2409.11200v1
- Date: Tue, 17 Sep 2024 13:55:44 GMT
- Title: LoRa Communication for Agriculture 4.0: Opportunities, Challenges, and Future Directions
- Authors: Lameya Aldhaheri, Noor Alshehhi, Irfana Ilyas Jameela Manzil, Ruhul Amin Khalil, Shumaila Javaid, Nasir Saeed, Mohamed-Slim Alouini,
- Abstract summary: The emerging field of smart agriculture leverages the Internet of Things (IoT) to revolutionize farming practices.
This paper investigates the transformative potential of Long Range (LoRa) technology as a key enabler of long-range wireless communication for agricultural IoT systems.
- Score: 40.08908132533476
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The emerging field of smart agriculture leverages the Internet of Things (IoT) to revolutionize farming practices. This paper investigates the transformative potential of Long Range (LoRa) technology as a key enabler of long-range wireless communication for agricultural IoT systems. By reviewing existing literature, we identify a gap in research specifically focused on LoRa's prospects and challenges from a communication perspective in smart agriculture. We delve into the details of LoRa-based agricultural networks, covering network architecture design, Physical Layer (PHY) considerations tailored to the agricultural environment, and channel modeling techniques that account for soil characteristics. The paper further explores relaying and routing mechanisms that address the challenges of extending network coverage and optimizing data transmission in vast agricultural landscapes. Transitioning to practical aspects, we discuss sensor deployment strategies and energy management techniques, offering insights for real-world deployments. A comparative analysis of LoRa with other wireless communication technologies employed in agricultural IoT applications highlights its strengths and weaknesses in this context. Furthermore, the paper outlines several future research directions to leverage the potential of LoRa-based agriculture 4.0. These include advancements in channel modeling for diverse farming environments, novel relay routing algorithms, integrating emerging sensor technologies like hyper-spectral imaging and drone-based sensing, on-device Artificial Intelligence (AI) models, and sustainable solutions. This survey can guide researchers, technologists, and practitioners to understand, implement, and propel smart agriculture initiatives using LoRa technology.
Related papers
- Application of Machine Learning in Agriculture: Recent Trends and Future Research Avenues [6.0460261046732455]
Food production is a vital global concern and the potential for an agritech revolution through artificial intelligence (AI) remains largely unexplored.
This paper presents a comprehensive review focused on the application of machine learning (ML) in agriculture, aiming to explore its transformative potential in farming practices and efficiency enhancement.
arXiv Detail & Related papers (2024-05-23T17:53:31Z) - Harnessing Artificial Intelligence for Sustainable Agricultural
Development in Africa: Opportunities, Challenges, and Impact [0.0]
The study navigates through the dynamic landscape of AI applications in agriculture.
Opportunities such as precision farming, crop monitoring, and climate-resilient practices are examined.
Ethical considerations and policy implications are also discussed.
arXiv Detail & Related papers (2024-01-03T23:02:13Z) - Artificial Intelligence in Sustainable Vertical Farming [0.0]
The paper provides a comprehensive exploration of the role of AI in sustainable vertical farming.
The review synthesizes the current state of AI applications, encompassing machine learning, computer vision, the Internet of Things (IoT), and robotics.
The implications extend beyond efficiency gains, considering economic viability, reduced environmental impact, and increased food security.
arXiv Detail & Related papers (2023-11-17T22:15:41Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - Web of Things and Trends in Agriculture: A Systematic Literature Review [0.4640835690336651]
The main aim of this study is about understanding and providing a growing and existing research content, issues, and directions for the future regarding WOT-based agriculture.
A taxonomy of WOT-base agriculture application domains has also been presented in this study.
arXiv Detail & Related papers (2023-06-15T12:20:30Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - An Ontological Knowledge Representation for Smart Agriculture [1.5484595752241122]
An agricultural framework for smart systems is presented in this study.
The knowledge graph is represented as a lattice to capture and perform reasoning on-temporal agricultural data.
arXiv Detail & Related papers (2021-12-21T14:58:04Z) - Artificial Intelligence for Satellite Communication: A Review [91.3755431537592]
This work provides a general overview of AI, its diverse sub-fields, and its state-of-the-art algorithms.
The application of AI to a wide variety of satellite communication aspects have demonstrated excellent potential, including beam-hopping, anti-jamming, network traffic forecasting, channel modeling, telemetry mining, ionospheric scintillation detecting, interference managing, remote sensing, behavior modeling, space-air-ground integrating, and energy managing.
arXiv Detail & Related papers (2021-01-25T13:01:16Z) - A survey on applications of augmented, mixed and virtual reality for
nature and environment [114.4879749449579]
Augmented reality (AR), virtual reality (VR) and mixed reality (MR) are technologies of great potential due to the engaging and enriching experiences they are capable of providing.
However, the possibilities that AR, VR and MR offer in the area of environmental applications are not yet widely explored.
We present the outcome of a survey meant to discover and classify existing AR/VR/MR applications that can benefit the environment or increase awareness on environmental issues.
arXiv Detail & Related papers (2020-08-27T09:59:27Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
We present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns.
Each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel.
We annotate nine types of field anomaly patterns that are most important to farmers.
arXiv Detail & Related papers (2020-01-05T20:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.