Validation of Quantum Elliptic Curve Point Addition Circuits
- URL: http://arxiv.org/abs/2506.03318v2
- Date: Mon, 14 Jul 2025 21:52:31 GMT
- Title: Validation of Quantum Elliptic Curve Point Addition Circuits
- Authors: Francis P. Papa,
- Abstract summary: Specific quantum algorithms exist to-in theory-break elliptic curve cryptographic protocols.<n>Implementing these algorithms requires designing quantum circuits that perform elliptic curve arithmetic.<n>I provide fixes to the circuit without increasing the leading-order gate cost.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Specific quantum algorithms exist to-in theory-break elliptic curve cryptographic protocols. Implementing these algorithms requires designing quantum circuits that perform elliptic curve arithmetic. To accurately judge a cryptographic protocol's resistance against future quantum computers, researchers figure out minimal resource-count circuits for performing these operations while still being correct. To assure the correctness of a circuit, it is integral to restore all ancilla qubits used to their original states. Failure to do so could result in decoherence of the computation's final result. Through rigorous classical simulation and unit testing, I surfaced four inconsistencies in the state-of-the-art quantum circuit for elliptic curve point addition where the circuit diagram states the qubits are returned in the original ($|0\rangle$) state, but the intermediate values are not uncomputed. I provide fixes to the circuit without increasing the leading-order gate cost.
Related papers
- Correcting a noisy quantum computer using a quantum computer [8.504296937226993]
We propose a decoding scheme that leverages the operations of the quantum circuit itself.<n>The trained quantum circuit $B$ can be deployed on quantum devices, such as superconducting qubits.<n>This insight paves the way for the development of self-correcting quantum computers.
arXiv Detail & Related papers (2025-06-10T01:35:21Z) - Quantum State Preparation Circuit Optimization Exploiting Don't Cares [6.158168913938158]
Quantum state preparation initializes the quantum registers and is essential for running quantum algorithms.
Existing methods synthesize an initial circuit and leverage compilers to reduce the circuit's gate count.
We introduce a peephole optimization algorithm that identifies such unitaries for replacement in the original circuit.
arXiv Detail & Related papers (2024-09-02T18:40:42Z) - Learning shallow quantum circuits [7.411898489476803]
We present an algorithm for learning the description of any unknown $n$-qubit shallow quantum circuit $U$.
We also provide a classical algorithm for learning the description of any unknown $n$-qubit state $lvert psi rangle$.
Our approach uses a quantum circuit representation based on local inversions and a technique to combine these inversions.
arXiv Detail & Related papers (2024-01-18T16:05:00Z) - Mitigating Quantum Gate Errors for Variational Eigensolvers Using Hardware-Inspired Zero-Noise Extrapolation [0.0]
We develop a recipe for mitigating quantum gate errors for variational algorithms using zero-noise extrapolation.
We utilize the fact that gate errors in a physical quantum device are distributed inhomogeneously over different qubits and qubit pairs.
We find that the estimated energy in the variational approach is approximately linear with respect to the circuit error sum.
arXiv Detail & Related papers (2023-07-20T18:00:03Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
We present a quantum circuit compiler that prepares an algorithm-specific graph state from quantum circuits described in high level languages.
The computation can then be implemented using a series of non-Pauli measurements on this graph state.
arXiv Detail & Related papers (2022-09-15T14:52:31Z) - Dynamic Qubit Routing with CNOT Circuit Synthesis for Quantum
Compilation [0.0]
We propose the algorithm PermRowCol for routing CNOTs in a quantum circuit.
It dynamically remaps logical qubits during the computation, and thus results in fewer output CNOTs than the algorithms Steiner-Gauss and RowCol.
arXiv Detail & Related papers (2022-05-02T08:20:13Z) - LOv-Calculus: A Graphical Language for Linear Optical Quantum Circuits [58.720142291102135]
We introduce the LOv-calculus, a graphical language for reasoning about linear optical quantum circuits.
Two LOv-circuits represent the same quantum process if and only if one can be transformed into the other with the rules of the LOv-calculus.
arXiv Detail & Related papers (2022-04-25T16:59:26Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Escaping from the Barren Plateau via Gaussian Initializations in Deep Variational Quantum Circuits [63.83649593474856]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.<n>However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.<n>This result leads to a general standpoint that deep quantum circuits would not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Reducing the Depth of Linear Reversible Quantum Circuits [0.0]
In quantum computing the decoherence time of the qubits determines the computation time available.
We propose a practical formulation of a divide and conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms.
Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.
arXiv Detail & Related papers (2022-01-17T12:36:32Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.