SportMamba: Adaptive Non-Linear Multi-Object Tracking with State Space Models for Team Sports
- URL: http://arxiv.org/abs/2506.03335v1
- Date: Tue, 03 Jun 2025 19:28:41 GMT
- Title: SportMamba: Adaptive Non-Linear Multi-Object Tracking with State Space Models for Team Sports
- Authors: Dheeraj Khanna, Jerrin Bright, Yuhao Chen, John S. Zelek,
- Abstract summary: SportMamba is an adaptive hybrid MOT technique specifically designed for tracking in dynamic team sports.<n>Our proposed technique, SportMamba, demonstrates state-of-the-art performance on various metrics in the SportsMOT dataset.
- Score: 10.705443721911406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-object tracking (MOT) in team sports is particularly challenging due to the fast-paced motion and frequent occlusions resulting in motion blur and identity switches, respectively. Predicting player positions in such scenarios is particularly difficult due to the observed highly non-linear motion patterns. Current methods are heavily reliant on object detection and appearance-based tracking, which struggle to perform in complex team sports scenarios, where appearance cues are ambiguous and motion patterns do not necessarily follow a linear pattern. To address these challenges, we introduce SportMamba, an adaptive hybrid MOT technique specifically designed for tracking in dynamic team sports. The technical contribution of SportMamba is twofold. First, we introduce a mamba-attention mechanism that models non-linear motion by implicitly focusing on relevant embedding dependencies. Second, we propose a height-adaptive spatial association metric to reduce ID switches caused by partial occlusions by accounting for scale variations due to depth changes. Additionally, we extend the detection search space with adaptive buffers to improve associations in fast-motion scenarios. Our proposed technique, SportMamba, demonstrates state-of-the-art performance on various metrics in the SportsMOT dataset, which is characterized by complex motion and severe occlusion. Furthermore, we demonstrate its generalization capability through zero-shot transfer to VIP-HTD, an ice hockey dataset.
Related papers
- Tracking the Unstable: Appearance-Guided Motion Modeling for Robust Multi-Object Tracking in UAV-Captured Videos [58.156141601478794]
Multi-object tracking (UAVT) aims to track multiple objects while maintaining consistent identities across frames of a given video.<n>Existing methods typically model motion cues and appearance separately, overlooking their interplay and resulting in suboptimal tracking performance.<n>We propose AMOT, which exploits appearance and motion cues through two key components: an Appearance-Motion Consistency (AMC) matrix and a Motion-aware Track Continuation (MTC) module.
arXiv Detail & Related papers (2025-08-03T12:06:47Z) - What You Have is What You Track: Adaptive and Robust Multimodal Tracking [72.92244578461869]
We present the first comprehensive study on tracker performance with temporally incomplete multimodal data.<n>Our model achieves SOTA performance across 9 benchmarks, excelling in both conventional complete and missing modality settings.
arXiv Detail & Related papers (2025-07-08T11:40:21Z) - Enhanced Multi-Object Tracking Using Pose-based Virtual Markers in 3x3 Basketball [3.072051066949152]
We propose a novel virtual marker (VM) MOT method for team sports, named Sports-vmTracking.<n>Our approach achieved an average HOTA score of 72.3%, over 10 points higher than other state-of-theart methods without VM, and resulted in 0 ID switches.
arXiv Detail & Related papers (2024-12-09T07:16:50Z) - Event-Based Tracking Any Point with Motion-Augmented Temporal Consistency [58.719310295870024]
This paper presents an event-based framework for tracking any point.<n>It tackles the challenges posed by spatial sparsity and motion sensitivity in events.<n>It achieves 150% faster processing with competitive model parameters.
arXiv Detail & Related papers (2024-12-02T09:13:29Z) - MambaTrack: A Simple Baseline for Multiple Object Tracking with State Space Model [18.607106274732885]
We introduce a Mamba-based motion model named Mamba moTion Predictor (MTP)
MTP takes the spatial-temporal location dynamics of objects as input, captures the motion pattern using a bi-Mamba encoding layer, and predicts the next motion.
Our proposed tracker, MambaTrack, demonstrates advanced performance on benchmarks such as Dancetrack and SportsMOT.
arXiv Detail & Related papers (2024-08-17T11:58:47Z) - Deep HM-SORT: Enhancing Multi-Object Tracking in Sports with Deep Features, Harmonic Mean, and Expansion IOU [0.49998148477760973]
Deep HM-SORT is a novel online multi-object tracking algorithm.
It balances appearance and motion cues, significantly reducing ID-swaps.
It achieves state-of-the-art performance on two large-scale public benchmarks.
arXiv Detail & Related papers (2024-06-17T20:41:14Z) - Sports-Traj: A Unified Trajectory Generation Model for Multi-Agent Movement in Sports [53.637837706712794]
We propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs.<n>Specifically, we introduce a Ghost Spatial Masking (GSM) module, embedded within a Transformer encoder, for spatial feature extraction.<n>We benchmark three practical sports datasets, Basketball-U, Football-U, and Soccer-U, for evaluation.
arXiv Detail & Related papers (2024-05-27T22:15:23Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
We introduce MotionCrafter, a one-shot instance-guided motion customization method.
MotionCrafter employs a parallel spatial-temporal architecture that injects the reference motion into the temporal component of the base model.
During training, a frozen base model provides appearance normalization, effectively separating appearance from motion.
arXiv Detail & Related papers (2023-12-08T16:31:04Z) - Hybrid-SORT: Weak Cues Matter for Online Multi-Object Tracking [51.16677396148247]
Multi-Object Tracking (MOT) aims to detect and associate all desired objects across frames.
In this paper, we demonstrate this long-standing challenge in MOT can be efficiently and effectively resolved by incorporating weak cues.
Our method Hybrid-SORT achieves superior performance on diverse benchmarks, including MOT17, MOT20, and especially DanceTrack.
arXiv Detail & Related papers (2023-08-01T18:53:24Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
We introduce a novel motion-based tracker, MotionTrack, centered around a learnable motion predictor.
Our experimental results demonstrate that MotionTrack yields state-of-the-art performance on datasets such as Dancetrack and SportsMOT.
arXiv Detail & Related papers (2023-06-05T04:24:11Z) - MAT: Motion-Aware Multi-Object Tracking [9.098793914779161]
In this paper, we propose Motion-Aware Tracker (MAT), focusing more on various motion patterns of different objects.
Experiments on MOT16 and MOT17 challenging benchmarks demonstrate that our MAT approach can achieve the superior performance by a large margin.
arXiv Detail & Related papers (2020-09-10T11:51:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.