論文の概要: A Foundation Model for Spatial Proteomics
- arxiv url: http://arxiv.org/abs/2506.03373v1
- Date: Tue, 03 Jun 2025 20:30:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:14.044993
- Title: A Foundation Model for Spatial Proteomics
- Title(参考訳): 空間プロテオミクスの基礎モデル
- Authors: Muhammad Shaban, Yuzhou Chang, Huaying Qiu, Yao Yu Yeo, Andrew H. Song, Guillaume Jaume, Yuchen Wang, Luca L. Weishaupt, Tong Ding, Anurag Vaidya, Abdallah Lamane, Daniel Shao, Mohammed Zidane, Yunhao Bai, Paige McCallum, Shuli Luo, Wenrui Wu, Yang Wang, Precious Cramer, Chi Ngai Chan, Pierre Stephan, Johanna Schaffenrath, Jia Le Lee, Hendrik A. Michel, Caiwei Tian, Cristina Almagro-Perez, Sophia J. Wagner, Sharifa Sahai, Ming Y. Lu, Richard J. Chen, Andrew Zhang, Mark Edward M. Gonzales, Ahmad Makky, Jia-Ying Joey Lee, Hao Cheng, Nourhan El Ahmar, Sayed Matar, Maximilian Haist, Darci Phillips, Yuqi Tan, Garry P. Nolan, W. Richard Burack, Jacob D. Estes, Jonathan T. C. Liu, Toni K Choueiri, Neeraj Agarwal, Marc Barry, Scott J. Rodig, Long Phi Le, Georg Gerber, Christian M. Schürch, Fabian J. Theis, Youn H Kim, Joe Yeong, Sabina Signoretti, Brooke E. Howitt, Lit-Hsin Loo, Qin Ma, Sizun Jiang, Faisal Mahmood,
- Abstract要約: ファンデーションモデルは、多くのタスクに適応可能な事前訓練されたジェネラリストバックボーンとして機能することで、画像解析を変換し始めている。
ここでは空間イメージングのための基礎モデルであるKRONOSを紹介する。
KRONOSは、175のタンパク質マーカー、16の組織タイプ、8の蛍光ベースのイメージングプラットフォームをカバーする4700万以上の画像パッチを自己監督的に訓練した。
- 参考スコア(独自算出の注目度): 12.03739424653581
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Foundation models have begun to transform image analysis by acting as pretrained generalist backbones that can be adapted to many tasks even when post-training data are limited, yet their impact on spatial proteomics, imaging that maps proteins at single-cell resolution, remains limited. Here, we introduce KRONOS, a foundation model built for spatial proteomics. KRONOS was trained in a self-supervised manner on over 47 million image patches covering 175 protein markers, 16 tissue types, and 8 fluorescence-based imaging platforms. We introduce key architectural adaptations to address the high-dimensional, multi-channel, and heterogeneous nature of multiplex imaging. We demonstrate that KRONOS learns biologically meaningful representations across multiple scales, ranging from cellular and microenvironment to tissue levels, enabling it to address diverse downstream tasks, including cell phenotyping, region classification, and patient stratification. Evaluated across 11 independent cohorts, KRONOS achieves state-of-the-art performance across cell phenotyping, treatment response prediction, and retrieval tasks, and is highly data-efficient. KRONOS also introduces the paradigm of segmentation-free patch-level processing for efficient and scalable spatial proteomics analysis, allowing cross-institutional comparisons, and as an image reverse search engine for spatial patterns. Together, these results position KRONOS as a flexible and scalable tool for spatial proteomics. The model is publicly accessible at https://github.com/mahmoodlab/KRONOS.
- Abstract(参考訳): ファンデーションモデルは、訓練後データが制限されている場合でも多くのタスクに適応できる事前訓練された一般的なバックボーンとして機能し、画像解析を変換し始めているが、その影響は空間プロテオミクス、タンパク質を単一セル解像度でマッピングするイメージングに限られている。
ここでは空間プロテオミクスのための基礎モデルであるKRONOSを紹介する。
KRONOSは、175のタンパク質マーカー、16の組織タイプ、8の蛍光ベースのイメージングプラットフォームをカバーする4700万以上の画像パッチを自己監督的に訓練した。
多重画像の高次元・多チャンネル・異種特性に対処するための重要なアーキテクチャ適応手法を提案する。
我々はKRONOSが細胞および微小環境から組織レベルまで、様々なスケールで生物学的に有意義な表現を学習し、細胞表現型、領域分類、患者層化など、様々な下流課題に対処できることを実証した。
11個の独立したコホートで評価され、KRONOSは、細胞表現型、治療反応予測、検索タスクにまたがる最先端のパフォーマンスを達成し、データ効率が高い。
KRONOSはまた、空間プロテオミクス解析を効率的かつスケーラブルにするためのセグメンテーションフリーのパッチレベル処理のパラダイムを導入し、相互構造比較を可能にし、空間パターンのイメージリバース検索エンジンとして実現している。
これらの結果は、KRONOSを空間プロテオミクスのための柔軟でスケーラブルなツールとして位置づけている。
モデルはhttps://github.com/mahmoodlab/KRONOS.comで公開されている。
関連論文リスト
- Molecular-driven Foundation Model for Oncologic Pathology [6.922502805825084]
スライドレベルの基盤モデルであるThreadsを導入し、任意のサイズの全スライド画像の普遍的な表現を生成する。
スレッドは47,171ヘマトキシリンとエオシン(H&E)染色組織分画の多モード学習法を用いて事前訓練を行った。
論文 参考訳(メタデータ) (2025-01-28T02:35:02Z) - Denoising Diffusion Probabilistic Models for Image Inpainting of Cell
Distributions in the Human Brain [0.0]
そこで本研究では,細胞-体間染色部の光顕微鏡スキャンにより学習した拡散確率モデル(DDPM)を提案する。
訓練したDDPMは,この目的のために非常にリアルな画像情報を生成でき,可塑性細胞統計と細胞構造パターンを生成できることを示す。
論文 参考訳(メタデータ) (2023-11-28T14:34:04Z) - Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
核セグメンテーションのための拡散法を初めて導入する。
このアイデアは、多数のラベル付き画像を合成し、セグメンテーションモデルを訓練することを目的としている。
実験の結果,10%のラベル付き実データセットを合成サンプルで拡張することにより,同等のセグメンテーション結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-10-22T06:16:16Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
拡散モデルに基づく新しい手法を提案し、不均衡なデータセットを、表現不足なグループから有意な例で拡張する。
本手法は,限定的な臨床データセットを拡張して,機械学習パイプラインのトレーニングに適したものにする。
論文 参考訳(メタデータ) (2023-04-19T09:52:50Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
本稿では,スライド病理像全体に対する共有コンテキスト処理の新たな概念を提案する。
AMIGOは、組織内のセルラーグラフを使用して、患者に単一の表現を提供する。
我々のモデルは、データの20%以下で同じ性能を達成できる程度に、欠落した情報に対して強い堅牢性を示す。
論文 参考訳(メタデータ) (2023-03-01T23:37:45Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - Multi-Scale Representation Learning on Proteins [78.31410227443102]
本稿では,タンパク質HoloProtのマルチスケールグラフ構築について紹介する。
表面はタンパク質の粗い詳細を捉え、配列は一次成分であり、構造はより微細な詳細を捉えている。
グラフエンコーダは、各レベルが下のレベル(s)からそのレベルでのグラフとエンコーディングを統合することで、マルチスケール表現を学習する。
論文 参考訳(メタデータ) (2022-04-04T08:29:17Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Generative Modelling of 3D in-silico Spongiosa with Controllable
Micro-Structural Parameters [1.0804061924593265]
本稿では, シリコン中の現実的な骨構造を生成するために, 生成的対向ネットワークの最近の進歩を適用することを提案する。
最初のステップでは、ワッサーシュタインの目的と勾配のペナルティを用いて、累積生成モデルを漸進的に訓練した。
骨粗しょう症治療後の骨構造をシミュレートし, 骨粗しょうの治療効果について検討した。
論文 参考訳(メタデータ) (2020-09-23T18:11:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。