論文の概要: Position: There Is No Free Bayesian Uncertainty Quantification
- arxiv url: http://arxiv.org/abs/2506.03670v1
- Date: Wed, 04 Jun 2025 08:01:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:14.2166
- Title: Position: There Is No Free Bayesian Uncertainty Quantification
- Title(参考訳): ベイズの自由な不確かさの定量化は不可能
- Authors: Ivan Melev, Goeran Kauermann,
- Abstract要約: ベイジアン更新の等価な最適化に基づく表現について議論する。
本稿では,ベイズ推論段階の品質評価手法を提案し,今後の研究の方向性を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to their intuitive appeal, Bayesian methods of modeling and uncertainty quantification have become popular in modern machine and deep learning. When providing a prior distribution over the parameter space, it is straightforward to obtain a distribution over the parameters that is conventionally interpreted as uncertainty quantification of the model. We challenge the validity of such Bayesian uncertainty quantification by discussing the equivalent optimization-based representation of Bayesian updating, provide an alternative interpretation that is coherent with the optimization-based perspective, propose measures of the quality of the Bayesian inferential stage, and suggest directions for future work.
- Abstract(参考訳): その直感的な魅力から、ベイズ的モデリング法や不確実性定量化は現代の機械やディープラーニングで人気を集めている。
パラメータ空間上の事前分布を与える場合、従来のモデルの不確実性定量化として解釈されるパラメータ上の分布を得るのは容易である。
ベイジアン更新の等価な最適化に基づく表現を議論し、最適化に基づく視点に忠実な代替解釈を提供し、ベイジアン推論段階の品質の尺度を提案し、今後の研究の方向性を提案することで、そのようなベイジアン不確実性定量化の妥当性に挑戦する。
関連論文リスト
- Entropy-regularized Gradient Estimators for Approximate Bayesian Inference [2.44755919161855]
本稿では,Kulback-Leibler分散系の勾配流を近似することにより,ベイズ後部を推定し,多様なサンプルを生成する。
本研究は, モデルベース強化学習における手法の性能評価と有効性を検討するために, 分類タスクに関する経験的評価を行う。
論文 参考訳(メタデータ) (2025-03-15T02:30:46Z) - Adaptive Conformal Inference by Betting [51.272991377903274]
データ生成プロセスについて仮定することなく適応型共形推論の問題を考察する。
適応型共形推論のための既存のアプローチは、オンライン勾配勾配の変種を用いたピンボール損失の最適化に基づいている。
本稿では,パラメータフリーなオンライン凸最適化手法を利用した適応型共形推論手法を提案する。
論文 参考訳(メタデータ) (2024-12-26T18:42:08Z) - Bayesian meta learning for trustworthy uncertainty quantification [3.683202928838613]
ベイズメタ学習のための新しい最適化フレームワークであるTrust-Bayesを提案する。
所定間隔で捕捉される基底真理の確率の低い境界を特徴付ける。
我々は、信頼に値する不確実性定量化の可能な確率について、サンプルの複雑さを解析する。
論文 参考訳(メタデータ) (2024-07-27T15:56:12Z) - A variational Bayes approach to debiased inference for low-dimensional parameters in high-dimensional linear regression [2.7498981662768536]
疎線形回帰における統計的推測のためのスケーラブルな変分ベイズ法を提案する。
我々のアプローチは、平均場近似をニュアンス座標に割り当てることに依存している。
これは前処理のステップに過ぎず、平均場変動ベイズの計算上の優位性を保っている。
論文 参考訳(メタデータ) (2024-06-18T14:27:44Z) - Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference [1.1383507019490222]
代理モデルはより複雑なシミュレーションモデルに対する概念近似である。
代理体の不確かさを定量化し、伝播することは、通常、特別な分析ケースに限られる。
本稿では,測定データを用いた代理モデルを用いたベイズ推定の3つの手法を提案する。
論文 参考訳(メタデータ) (2023-12-08T16:31:52Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Integrating Uncertainty into Neural Network-based Speech Enhancement [27.868722093985006]
時間周波数領域における監視されたマスキングアプローチは、ディープニューラルネットワークを使用して乗法マスクを推定し、クリーンな音声を抽出することを目的としている。
これにより、信頼性の保証や尺度を使わずに、各入力に対する単一の見積もりが導かれる。
クリーン音声推定における不確実性モデリングの利点について検討する。
論文 参考訳(メタデータ) (2023-05-15T15:55:12Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。