Adapt before Continual Learning
- URL: http://arxiv.org/abs/2506.03956v3
- Date: Thu, 31 Jul 2025 03:04:31 GMT
- Title: Adapt before Continual Learning
- Authors: Aojun Lu, Tao Feng, Hangjie Yuan, Chunhui Ding, Yanan Sun,
- Abstract summary: Adapting PTMs before the core CL process (ACL) is a novel framework that introduces a plug-and-play adaptation phase prior to learning each new task.<n>ACL significantly improves CL performance across benchmarks and integrated methods.
- Score: 9.477667054965782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual Learning (CL) seeks to enable neural networks to incrementally acquire new knowledge (plasticity) while retaining existing knowledge (stability). Although pre-trained models (PTMs) have provided a strong foundation for CL, existing approaches face a fundamental challenge in balancing these two competing objectives. Current methods typically address stability by freezing the PTM backbone, which severely limits the model's plasticity, particularly when incoming data distribution diverges largely from the pre-training data. Alternatively, sequentially fine-tuning the entire PTM can adapt to new knowledge but often leads to catastrophic forgetting, highlighting the critical stability-plasticity trade-off in PTM-based CL. To address this limitation, we propose Adapting PTMs before the core CL} process (ACL), a novel framework that introduces a plug-and-play adaptation phase prior to learning each new task. During this phase, ACL refines the PTM backbone by aligning embeddings with their original class prototypes while distancing them from irrelevant classes. This mechanism theoretically and empirically demonstrates desirable balance between stability and plasticity, significantly improving CL performance across benchmarks and integrated methods. Code is available at https://github.com/byyx666/ACL_code.
Related papers
- BECAME: BayEsian Continual Learning with Adaptive Model MErging [21.642774366793997]
We introduce a two-stage framework named BECAME, which synergizes the expertise of gradient projection and adaptive merging.<n>Our approach outperforms state-of-the-art CL methods and existing merging strategies.
arXiv Detail & Related papers (2025-04-03T15:07:28Z) - PTMs-TSCIL Pre-Trained Models Based Class-Incremental Learning [7.784244204592032]
Class-incremental learning (CIL) for time series data faces challenges in balancing stability against catastrophic forgetting and plasticity for new knowledge acquisition.<n>We present the first exploration of PTM-based Time Series Class-Incremental Learning (TSCIL)
arXiv Detail & Related papers (2025-03-10T10:27:21Z) - SD-LoRA: Scalable Decoupled Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
Continual Learning with foundation models has emerged as a promising paradigm to exploit abundant knowledge acquired during pre-training for tackling sequential tasks.<n>Existing prompt-based and Low-Rank Adaptation-based (LoRA-based) methods often require expanding a prompt/LoRA pool or retaining samples of previous tasks.<n>We propose Scalable Decoupled LoRA (SD-LoRA) for class incremental learning, which continually separates the learning of the magnitude and direction of LoRA components without rehearsal.
arXiv Detail & Related papers (2025-01-22T20:00:41Z) - Continuous Knowledge-Preserving Decomposition for Few-Shot Continual Learning [80.31842748505895]
Few-shot class-incremental learning (FSCIL) involves learning new classes from limited data while retaining prior knowledge.<n>We propose Continuous Knowledge-Preserving Decomposition for FSCIL (CKPD-FSCIL), a framework that decomposes a model's weights into two parts.<n> Experiments on multiple benchmarks show that CKPD-FSCIL outperforms state-of-the-art methods.
arXiv Detail & Related papers (2025-01-09T07:18:48Z) - SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training [68.7896349660824]
We present an in-depth analysis of the progressive overfitting problem from the lens of Seq FT.
Considering that the overly fast representation learning and the biased classification layer constitute this particular problem, we introduce the advanced Slow Learner with Alignment (S++) framework.
Our approach involves a Slow Learner to selectively reduce the learning rate of backbone parameters, and a Alignment to align the disjoint classification layers in a post-hoc fashion.
arXiv Detail & Related papers (2024-08-15T17:50:07Z) - Reflecting on the State of Rehearsal-free Continual Learning with Pretrained Models [63.11967672725459]
We show how P-RFCL techniques can be matched by a simple and lightweight PEFT baseline.
We show how most often, P-RFCL techniques can be matched by a simple and lightweight PEFT baseline.
arXiv Detail & Related papers (2024-06-13T17:57:10Z) - FeTT: Continual Class Incremental Learning via Feature Transformation Tuning [19.765229703131876]
Continual learning (CL) aims to extend deep models from static and enclosed environments to dynamic and complex scenarios.
Recent CL models have gradually shifted towards the utilization of pre-trained models with parameter-efficient fine-tuning strategies.
This paper proposes feature transformation tuning (FeTT) model to non-parametrically fine-tune backbone features across all tasks.
arXiv Detail & Related papers (2024-05-20T06:33:50Z) - Self-Expansion of Pre-trained Models with Mixture of Adapters for Continual Learning [21.19820308728003]
Continual learning (CL) aims to continually accumulate knowledge from a non-stationary data stream without catastrophic forgetting of learned knowledge.<n>Existing PTM-based CL methods use restricted adaptation on a fixed set of these modules to avoid forgetting.<n>We propose Self-Expansion of pre-trained models with Modularized Adaptation (SEMA), a novel approach to enhance the control of stability-plasticity balance in PTM-based CL.
arXiv Detail & Related papers (2024-03-27T17:59:21Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
Continual Learning aims to overcome the catastrophic forgetting of former knowledge when learning new ones.
This paper presents a comprehensive survey of the latest advancements in PTM-based CL.
arXiv Detail & Related papers (2024-01-29T18:27:52Z) - Enhancing Plasticity for First Session Adaptation Continual Learning [20.62749699589017]
We introduce Plasticity-Enhanced Test-Time Adaptation in Class-Incremental Learning (PLASTIC)<n>PLASTIC reinstates plasticity in CIL while preserving model stability.<n>It consistently outperforms both conventional and state-of-the-art PTM-based CIL approaches.
arXiv Detail & Related papers (2023-10-17T13:06:39Z) - Revisiting Class-Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity are All You Need [84.3507610522086]
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting old ones.
Recent pre-training has achieved substantial progress, making vast pre-trained models (PTMs) accessible for CIL.
We argue that the core factors in CIL are adaptivity for model updating and generalizability for knowledge transferring.
arXiv Detail & Related papers (2023-03-13T17:59:02Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - When Does Contrastive Learning Preserve Adversarial Robustness from
Pretraining to Finetuning? [99.4914671654374]
We propose AdvCL, a novel adversarial contrastive pretraining framework.
We show that AdvCL is able to enhance cross-task robustness transferability without loss of model accuracy and finetuning efficiency.
arXiv Detail & Related papers (2021-11-01T17:59:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.