Pseudo-Simulation for Autonomous Driving
- URL: http://arxiv.org/abs/2506.04218v1
- Date: Wed, 04 Jun 2025 17:57:53 GMT
- Title: Pseudo-Simulation for Autonomous Driving
- Authors: Wei Cao, Marcel Hallgarten, Tianyu Li, Daniel Dauner, Xunjiang Gu, Caojun Wang, Yakov Miron, Marco Aiello, Hongyang Li, Igor Gilitschenski, Boris Ivanovic, Marco Pavone, Andreas Geiger, Kashyap Chitta,
- Abstract summary: Existing evaluation paradigms for Autonomous Vehicles (AVs) face critical limitations.<n>Real-world evaluation is often challenging due to safety concerns and a lack of realism.<n>Open-loop evaluation relies on metrics that generally overlook compounding errors.
- Score: 54.0732376977553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing evaluation paradigms for Autonomous Vehicles (AVs) face critical limitations. Real-world evaluation is often challenging due to safety concerns and a lack of reproducibility, whereas closed-loop simulation can face insufficient realism or high computational costs. Open-loop evaluation, while being efficient and data-driven, relies on metrics that generally overlook compounding errors. In this paper, we propose pseudo-simulation, a novel paradigm that addresses these limitations. Pseudo-simulation operates on real datasets, similar to open-loop evaluation, but augments them with synthetic observations generated prior to evaluation using 3D Gaussian Splatting. Our key idea is to approximate potential future states the AV might encounter by generating a diverse set of observations that vary in position, heading, and speed. Our method then assigns a higher importance to synthetic observations that best match the AV's likely behavior using a novel proximity-based weighting scheme. This enables evaluating error recovery and the mitigation of causal confusion, as in closed-loop benchmarks, without requiring sequential interactive simulation. We show that pseudo-simulation is better correlated with closed-loop simulations (R^2=0.8) than the best existing open-loop approach (R^2=0.7). We also establish a public leaderboard for the community to benchmark new methodologies with pseudo-simulation. Our code is available at https://github.com/autonomousvision/navsim.
Related papers
- Bench2Drive-R: Turning Real World Data into Reactive Closed-Loop Autonomous Driving Benchmark by Generative Model [63.336123527432136]
We introduce Bench2Drive-R, a generative framework that enables reactive closed-loop evaluation.<n>Unlike existing video generative models for autonomous driving, the proposed designs are tailored for interactive simulation.<n>We compare the generation quality of Bench2Drive-R with existing generative models and achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-12-11T06:35:18Z) - Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking [65.24988062003096]
We present NAVSIM, a framework for benchmarking vision-based driving policies.
Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other.
NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights.
arXiv Detail & Related papers (2024-06-21T17:59:02Z) - Robust Bayesian Inference for Simulator-based Models via the MMD
Posterior Bootstrap [13.448658162594604]
We propose a novel algorithm based on the posterior bootstrap and maximum mean discrepancy estimators.
This leads to a highly-parallelisable Bayesian inference algorithm with strong properties.
The approach is then assessed on a range of examples including a g-and-k distribution and a toggle-switch model.
arXiv Detail & Related papers (2022-02-09T22:12:19Z) - Auto-Tuned Sim-to-Real Transfer [143.44593793640814]
Policies trained in simulation often fail when transferred to the real world.
Current approaches to tackle this problem, such as domain randomization, require prior knowledge and engineering.
We propose a method for automatically tuning simulator system parameters to match the real world.
arXiv Detail & Related papers (2021-04-15T17:59:55Z) - Simulation-efficient marginal posterior estimation with swyft: stop
wasting your precious time [5.533353383316288]
We present algorithms for nested neural likelihood-to-evidence ratio estimation and simulation reuse.
Together, these algorithms enable automatic and extremely simulator efficient estimation of marginal and joint posteriors.
arXiv Detail & Related papers (2020-11-27T19:00:07Z) - Continuous Optimization Benchmarks by Simulation [0.0]
Benchmark experiments are required to test, compare, tune, and understand optimization algorithms.
Data from previous evaluations can be used to train surrogate models which are then used for benchmarking.
We show that the spectral simulation method enables simulation for continuous optimization problems.
arXiv Detail & Related papers (2020-08-14T08:50:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.