Topological Mixed States: Axiomatic Approaches and Phases of Matter
- URL: http://arxiv.org/abs/2506.04221v1
- Date: Wed, 04 Jun 2025 17:58:45 GMT
- Title: Topological Mixed States: Axiomatic Approaches and Phases of Matter
- Authors: Tai-Hsuan Yang, Bowen Shi, Jong Yeon Lee,
- Abstract summary: In closed quantum systems, topological orders are understood through equivalence classes of ground states of gapped local Hamiltonians.<n>Here, we fill this gap by proposing an approach based on three axioms: ($i$) local recoverability, ($ii$) absence of long-range correlations, and ($iii$) spatial uniformity.<n>Results lay the foundation for a systematic classification of topological states in open quantum systems.
- Score: 11.884072864070937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For closed quantum systems, topological orders are understood through the equivalence classes of ground states of gapped local Hamiltonians. The generalization of this conceptual paradigm to open quantum systems, however, remains elusive, often relying on operational definitions without fundamental principles. Here, we fill this gap by proposing an approach based on three axioms: ($i$) local recoverability, ($ii$) absence of long-range correlations, and ($iii$) spatial uniformity. States that satisfy these axioms are fixed points; requiring the axioms only after coarse-graining promotes each fixed point to an equivalence class, i.e. a phase, presenting the first step towards the axiomatic classification of mixed-state phases of matter: \emph{mixed-state bootstrap program}. From these axioms, a rich set of topological data naturally emerges. For example, each topological mixed state supports locally indistinguishable classical and/or quantum logical memories with distinct responses to topological operations. These data label distinct mixed-state phases, allowing one to distinguish them. We further uncover a hierarchy of secret-sharing constraints: in non-Abelian phases, reliable recovery-even of information that looks purely classical -- demands a specific coordination among spatial subregions, a requirement different across non-Abelian classes. This originates from non-Abelian fusion rules that can stay robust under decoherence. Finally, we performed large-scale numerical simulations to corroborate stability-weakly decohered fixed points respect the axioms once coarse-grained. These results lay the foundation for a systematic classification of topological states in open quantum systems.
Related papers
- Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.<n>We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.<n>We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - Observation of non-Hermitian bulk-boundary correspondence in non-chiral non-unitary quantum dynamics of single photons [31.05848822220465]
In non-Hermitian systems, preserved chiral symmetry is one of the key ingredients, which plays a pivotal role in determining non-Hermitian topology.<n>We theoretically predict and experimentally demonstrate the bulk-boundary correspondence of a one-dimensional (1D) non-Hermitian system with chiral symmetry breaking.
arXiv Detail & Related papers (2025-04-07T09:43:43Z) - Nonlinearity-driven Topology via Spontaneous Symmetry Breaking [79.16635054977068]
We consider a chain of parametrically-driven quantum resonators coupled only via weak nearest-neighbour cross-Kerr interaction.<n>Topology is dictated by the structure of the Kerr nonlinearity, yielding a non-trivial bulk-boundary correspondence.
arXiv Detail & Related papers (2025-03-15T00:20:45Z) - Topology of Monitored Quantum Dynamics [5.388986285256996]
We classify Kraus operators and their effective non-Hermitian dynamical generators.<n>Our classification elucidates the role of topology in measurement-induced phase transitions.<n>We establish the bulk-boundary correspondence in monitored quantum dynamics.
arXiv Detail & Related papers (2024-12-09T01:27:26Z) - Towards a classification of mixed-state topological orders in two dimensions [4.380380626083065]
We take a step toward classifying mixed-state topological orders in two spatial dimensions.<n>We establish mixed-state topological orders that are intrinsically mixed, i.e., that have no ground state counterpart.<n>We conjecture that mixed-state topological orders are classified by premodular anyon theories.
arXiv Detail & Related papers (2024-05-03T18:00:00Z) - Quantum Chaos on Edge [36.136619420474766]
We identify two different classes: the near edge physics of sparse'' and the near edge of dense'' chaotic systems.
The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension.
While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different.
arXiv Detail & Related papers (2024-03-20T11:31:51Z) - Sufficient condition for universal quantum computation using bosonic
circuits [44.99833362998488]
We focus on promoting circuits that are otherwise simulatable to computational universality.
We first introduce a general framework for mapping a continuous-variable state into a qubit state.
We then cast existing maps into this framework, including the modular and stabilizer subsystem decompositions.
arXiv Detail & Related papers (2023-09-14T16:15:14Z) - Biorthogonal Dynamical Quantum Phase Transitions in Non-Hermitian Systems [5.50622466592942]
We develop a comprehensive framework for studying biorthogonal dynamical quantum phase transitions in non-Hermitian systems.
We discover that the periodicity of biorthogonal dynamical quantum phase transitions depends on whether the two-level subsystem at the critical momentum oscillates or reaches a steady state.
arXiv Detail & Related papers (2023-07-06T13:54:47Z) - Topological Phases with Average Symmetries: the Decohered, the Disordered, and the Intrinsic [11.002608494115886]
Topological phases in mixed quantum states, originating from textitdecoherence in open quantum systems, have recently garnered significant interest.<n>We present a systematic classification and characterization of average symmetry-protected topological phases.<n>We also formulate the theory of average symmetry-enriched topological (ASET) orders in disordered bosonic systems.
arXiv Detail & Related papers (2023-05-25T18:04:22Z) - Softening of Majorana edge states by long-range couplings [77.34726150561087]
Long-range couplings in the Kitaev chain is shown to modify the universal scaling of topological states close to the critical point.
We prove that the Majorana states become increasingly delocalised at a universal rate which is only determined by the interaction range.
arXiv Detail & Related papers (2023-01-29T19:00:08Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - An Operational Definition of Topological Order [0.0]
We show that one can interpret topological order as the ability of a system to perform topological error correction.
We demonstrate the existence of topological order in open systems and their phase transitions to topologically trivial states.
arXiv Detail & Related papers (2020-05-13T18:15:10Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.