Towards a classification of mixed-state topological orders in two dimensions
- URL: http://arxiv.org/abs/2405.02390v3
- Date: Tue, 21 Jan 2025 22:13:24 GMT
- Title: Towards a classification of mixed-state topological orders in two dimensions
- Authors: Tyler Ellison, Meng Cheng,
- Abstract summary: We take a step toward classifying mixed-state topological orders in two spatial dimensions.
We establish mixed-state topological orders that are intrinsically mixed, i.e., that have no ground state counterpart.
We conjecture that mixed-state topological orders are classified by premodular anyon theories.
- Score: 4.380380626083065
- License:
- Abstract: The classification and characterization of topological phases of matter is well understood for ground states of gapped Hamiltonians that are well isolated from the environment. However, decoherence due to interactions with the environment is inevitable -- thus motivating the investigation of topological orders in the context of mixed states. Here, we take a step toward classifying mixed-state topological orders in two spatial dimensions by considering their (emergent) generalized symmetries. We argue that their 1-form symmetries and the associated anyon theories lead to a partial classification under two-way connectivity by quasi-local quantum channels. This allows us to establish mixed-state topological orders that are intrinsically mixed, i.e., that have no ground state counterpart. We provide a wide range of examples based on topological subsystem codes, decohering $G$-graded string-net models, and "classically gauging" symmetry-enriched topological orders. One of our main examples is an Ising string-net model under the influence of dephasing noise. We study the resulting space of locally-indistinguishable states and compute the modular transformations within a particular coherent space. Based on our examples, we identify two possible effects of quasi-local quantum channels on anyon theories: (1) anyons can be incoherently proliferated -- thus reducing to a commutant of the proliferated anyons, or (2) the system can be "classically gauged", resulting in the symmetrization of anyons and an extension by transparent bosons. Given these two mechanisms, we conjecture that mixed-state topological orders are classified by premodular anyon theories, i.e., those for which the braiding relations may be degenerate.
Related papers
- Topological nature of edge states for one-dimensional systems without symmetry protection [46.87902365052209]
We numerically verify and analytically prove a winding number invariant that correctly predicts the number of edge states in one-dimensional, nearest-neighbour (between unit cells)
Our invariant is invariant under unitary and similarity transforms.
arXiv Detail & Related papers (2024-12-13T19:44:54Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - A Noisy Approach to Intrinsically Mixed-State Topological Order [0.0]
We show that the resulting mixed-state can display intrinsically mixed-state topological order (imTO)
We find that gauging out anyons generically results in imTO, with the decohered mixed-state strongly symmetric under certain anomalous 1-form symmetries.
arXiv Detail & Related papers (2024-03-20T18:00:01Z) - Intrinsic Mixed-state Topological Order [4.41737598556146]
We show that decoherence can give rise to new types of topological order.
We construct concrete examples by proliferating fermionic anyons in the toric code via local quantum channels.
The resulting mixed states retain long-range entanglement, which manifests in the nonzero topological entanglement negativity.
arXiv Detail & Related papers (2023-07-25T18:34:10Z) - Theory of topological defects and textures in two-dimensional quantum
orders with spontaneous symmetry breaking [9.847963830982243]
We study the topological point defects and textures of order parameters in two-dimensional quantum many-body systems.
In the absence of intrinsic topological orders, we show a connection between the symmetry properties of point defects and textures to deconfined quantum criticality.
When the symmetry-breaking ground state have intrinsic topological orders, we show that the point defects can permute different anyons when braided around.
arXiv Detail & Related papers (2022-11-23T18:50:02Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Squaring the fermion: The threefold way and the fate of zero modes [0.0]
We investigate topological properties and classification of mean-field theories of stable bosonic systems.
Of the three standard classifying symmetries, only time-reversal represents a real symmetry of the many-boson system.
We unveil an elegant threefold-way topological classification of non-interacting bosons.
arXiv Detail & Related papers (2020-05-12T18:00:07Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.