Deep learning for predicting hauling fleet production capacity under uncertainties in open pit mines using real and simulated data
- URL: http://arxiv.org/abs/2506.04296v1
- Date: Wed, 04 Jun 2025 12:12:56 GMT
- Title: Deep learning for predicting hauling fleet production capacity under uncertainties in open pit mines using real and simulated data
- Authors: N Guerin, M Nakhla, A Dehoux, J L Loyer,
- Abstract summary: We propose a deep-learning framework that blends real-world operational records with synthetically generated mechanical-breakdown scenarios.<n>We evaluate two architectures: an XGBoost regressor achieving a median absolute error (MedAE) of 14.3 per cent and a Long Short-Term Memory network with a MedAE of 15.1 per cent.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate short-term forecasting of hauling-fleet capacity is crucial in open-pit mining, where weather fluctuations, mechanical breakdowns, and variable crew availability introduce significant operational uncertainties. We propose a deep-learning framework that blends real-world operational records (high-resolution rainfall measurements, fleet performance telemetry) with synthetically generated mechanical-breakdown scenarios to enable the model to capture fluctuating high-impact failure events. We evaluate two architectures: an XGBoost regressor achieving a median absolute error (MedAE) of 14.3 per cent and a Long Short-Term Memory network with a MedAE of 15.1 per cent. Shapley Additive exPlanations (SHAP) value analyses identify cumulative rainfall, historical payload trends, and simulated breakdown frequencies as dominant predictors. Integration of simulated breakdown data and shift-planning features notably reduces prediction volatility. Future work will further integrate maintenance-scheduling indicators (Mean Time Between Failures, Mean Time to Repair), detailed human resource data (operator absenteeism, crew efficiency metrics), blast event scheduling, and other operational constraints to enhance forecast robustness and adaptability. This hybrid modelling approach offers a comprehensive decision-support tool for proactive, data-driven fleet management under dynamically uncertain conditions.
Related papers
- Diffusion-based Time Series Forecasting for Sewerage Systems [0.3495246564946556]
We introduce a novel deep learning approach to enhance the accuracy of contextual forecasting in sewerage systems.<n>Our system excels at capturing complex correlations across diverse environmental signals, enabling robust predictions even during extreme weather events.<n>Our empirical tests on real sewerage system data confirm the model's exceptional capability to deliver reliable contextual predictions.
arXiv Detail & Related papers (2025-06-10T08:48:05Z) - Machine Learning Predictions for Traffic Equilibria in Road Renovation Scheduling [1.124958340749622]
This paper investigates the use of machine learning-based surrogate models to predict network-wide congestion caused by road renovations.<n>XGBoost significantly outperforms alternatives in a range of metrics, most strikingly Mean Absolute Percentage Error (MAPE)<n>This modeling approach has the potential to reduce the computational burden of large-scale traffic assignment problems in maintenance planning.
arXiv Detail & Related papers (2025-06-06T09:59:05Z) - Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
We introduce Future-Guided Learning, an approach that enhances time-series event forecasting through a dynamic feedback mechanism inspired by predictive coding.<n>Our method involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on current data.<n>We validate our approach on a variety of tasks, demonstrating a 44.8% increase in AUC-ROC for seizure prediction using EEG data, and a 48.7% reduction in MSE for forecasting in nonlinear dynamical systems.
arXiv Detail & Related papers (2024-10-19T21:22:55Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Prediction of rare events in the operation of household equipment using
co-evolving time series [1.1249583407496218]
Our approach involves a weighted autologistic regression model, where we leverage the temporal behavior of the data to enhance predictive capabilities.
Evaluation on synthetic and real-world datasets confirms that our approach outperform state-of-the-art of predicting home equipment failure methods.
arXiv Detail & Related papers (2023-12-15T00:21:00Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.