Machine Learning Predictions for Traffic Equilibria in Road Renovation Scheduling
- URL: http://arxiv.org/abs/2506.05933v1
- Date: Fri, 06 Jun 2025 09:59:05 GMT
- Title: Machine Learning Predictions for Traffic Equilibria in Road Renovation Scheduling
- Authors: Robbert Bosch, Wouter van Heeswijk, Patricia Rogetzer, Martijn Mes,
- Abstract summary: This paper investigates the use of machine learning-based surrogate models to predict network-wide congestion caused by road renovations.<n>XGBoost significantly outperforms alternatives in a range of metrics, most strikingly Mean Absolute Percentage Error (MAPE)<n>This modeling approach has the potential to reduce the computational burden of large-scale traffic assignment problems in maintenance planning.
- Score: 1.124958340749622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately estimating the impact of road maintenance schedules on traffic conditions is important because maintenance operations can substantially worsen congestion if not carefully planned. Reliable estimates allow planners to avoid excessive delays during periods of roadwork. Since the exact increase in congestion is difficult to predict analytically, traffic simulations are commonly used to assess the redistribution of the flow of traffic. However, when applied to long-term maintenance planning involving many overlapping projects and scheduling alternatives, these simulations must be run thousands of times, resulting in a significant computational burden. This paper investigates the use of machine learning-based surrogate models to predict network-wide congestion caused by simultaneous road renovations. We frame the problem as a supervised learning task, using one-hot encodings, engineered traffic features, and heuristic approximations. A range of linear, ensemble-based, probabilistic, and neural regression models is evaluated under an online learning framework in which data progressively becomes available. The experimental results show that the Costliest Subset Heuristic provides a reasonable approximation when limited training data is available, and that most regression models fail to outperform it, with the exception of XGBoost, which achieves substantially better accuracy. In overall performance, XGBoost significantly outperforms alternatives in a range of metrics, most strikingly Mean Absolute Percentage Error (MAPE) and Pinball loss, where it achieves a MAPE of 11% and outperforms the next-best model by 20% and 38% respectively. This modeling approach has the potential to reduce the computational burden of large-scale traffic assignment problems in maintenance planning.
Related papers
- Deep learning for predicting hauling fleet production capacity under uncertainties in open pit mines using real and simulated data [0.0]
We propose a deep-learning framework that blends real-world operational records with synthetically generated mechanical-breakdown scenarios.<n>We evaluate two architectures: an XGBoost regressor achieving a median absolute error (MedAE) of 14.3 per cent and a Long Short-Term Memory network with a MedAE of 15.1 per cent.
arXiv Detail & Related papers (2025-06-04T12:12:56Z) - Data Scaling Laws for End-to-End Autonomous Driving [83.85463296830743]
We evaluate the performance of a simple end-to-end driving architecture on internal driving datasets ranging in size from 16 to 8192 hours.<n>Specifically, we investigate how much additional training data is needed to achieve a target performance gain.
arXiv Detail & Related papers (2025-04-06T03:23:48Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Urban Traffic Forecasting with Integrated Travel Time and Data Availability in a Conformal Graph Neural Network Framework [0.6554326244334868]
State-of-the-art models often struggle to consider the data in the best way possible.
We propose a novel framework to incorporate travel times between stations into a weighted adjacency matrix of a Graph Neural Network architecture.
arXiv Detail & Related papers (2024-07-17T01:11:07Z) - A Comparative Study of Loss Functions: Traffic Predictions in Regular
and Congestion Scenarios [0.0]
We explore various loss functions inspired by heavy tail analysis and imbalanced classification problems to address this issue.
We discover that when optimizing for Mean Absolute Error (MAE), the MAE-Focal Loss function stands out as the most effective.
This research enhances deep learning models' capabilities in forecasting sudden speed changes due to congestion.
arXiv Detail & Related papers (2023-08-29T17:44:02Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Robustness Benchmark of Road User Trajectory Prediction Models for
Automated Driving [0.0]
We benchmark machine learning models against perturbations that simulate functional insufficiencies observed during model deployment in a vehicle.
Training the models with similar perturbations effectively reduces performance degradation, with error increases of up to +87.5%.
We argue that despite being an effective mitigation strategy, data augmentation through perturbations during training does not guarantee robustness towards unforeseen perturbations.
arXiv Detail & Related papers (2023-04-04T15:47:42Z) - Towards better traffic volume estimation: Jointly addressing the
underdetermination and nonequilibrium problems with correlation-adaptive GNNs [47.18837782862979]
This paper studies two key problems with regard to traffic volume estimation: (1) underdetermined traffic flows caused by undetected movements, and (2) non-equilibrium traffic flows arise from congestion propagation.
We demonstrate a graph-based deep learning method that can offer a data-driven, model-free and correlation adaptive approach to tackle the above issues.
arXiv Detail & Related papers (2023-03-10T02:22:33Z) - Efficient Traffic State Forecasting using Spatio-Temporal Network
Dependencies: A Sparse Graph Neural Network Approach [6.203371866342754]
Traffic prediction in a transportation network is paramount for effective traffic operations and management.
Long-term traffic prediction (beyond 30 minutes into the future) remains challenging in current research.
We propose sparse training to the training cost, while preserving the prediction accuracy.
arXiv Detail & Related papers (2022-11-06T05:41:39Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.