The Cost of Dynamic Reasoning: Demystifying AI Agents and Test-Time Scaling from an AI Infrastructure Perspective
- URL: http://arxiv.org/abs/2506.04301v1
- Date: Wed, 04 Jun 2025 14:37:54 GMT
- Title: The Cost of Dynamic Reasoning: Demystifying AI Agents and Test-Time Scaling from an AI Infrastructure Perspective
- Authors: Jiin Kim, Byeongjun Shin, Jinha Chung, Minsoo Rhu,
- Abstract summary: Large-language-model (LLM)-based AI agents have recently showcased impressive versatility by employing dynamic reasoning.<n>This paper presents the first comprehensive system-level analysis of AI agents, quantifying their resource usage, latency behavior, energy consumption, and test-time scaling strategies.<n>Our findings reveal that while agents improve accuracy with increased compute, they suffer from rapidly diminishing returns, widening latency variance, and unsustainable infrastructure costs.
- Score: 3.0868637098088403
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large-language-model (LLM)-based AI agents have recently showcased impressive versatility by employing dynamic reasoning, an adaptive, multi-step process that coordinates with external tools. This shift from static, single-turn inference to agentic, multi-turn workflows broadens task generalization and behavioral flexibility, but it also introduces serious concerns about system-level cost, efficiency, and sustainability. This paper presents the first comprehensive system-level analysis of AI agents, quantifying their resource usage, latency behavior, energy consumption, and datacenter-wide power consumption demands across diverse agent designs and test-time scaling strategies. We further characterize how AI agent design choices, such as few-shot prompting, reflection depth, and parallel reasoning, impact accuracy-cost tradeoffs. Our findings reveal that while agents improve accuracy with increased compute, they suffer from rapidly diminishing returns, widening latency variance, and unsustainable infrastructure costs. Through detailed evaluation of representative agents, we highlight the profound computational demands introduced by AI agent workflows, uncovering a looming sustainability crisis. These results call for a paradigm shift in agent design toward compute-efficient reasoning, balancing performance with deployability under real-world constraints.
Related papers
- Towards Pervasive Distributed Agentic Generative AI -- A State of The Art [0.0]
The rapid advancement of intelligent agents and Large Language Models (LLMs) is reshaping the pervasive computing field.<n>This survey outlines the architectural components of LLM agents and examines their deployment and evaluation across various scenarios.<n>It highlights state-of-the-art agent deployment strategies and applications, including local and distributed execution on resource-constrained devices.
arXiv Detail & Related papers (2025-06-16T10:15:06Z) - ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding [71.654781631463]
ReAgent-V is a novel agentic video understanding framework.<n>It integrates efficient frame selection with real-time reward generation during inference.<n>Extensive experiments on 12 datasets demonstrate significant gains in generalization and reasoning.
arXiv Detail & Related papers (2025-06-02T04:23:21Z) - Will Agents Replace Us? Perceptions of Autonomous Multi-Agent AI [0.0]
This study analyzes responses from 130 participants to a survey on the capabilities, impact, and governance of AI agents.<n>We explore expected timelines for AI replacing programmers, identify perceived barriers to deployment, and examine beliefs about responsibility when agents make critical decisions.
arXiv Detail & Related papers (2025-06-01T11:02:52Z) - The Real Barrier to LLM Agent Usability is Agentic ROI [110.31127571114635]
Large Language Model (LLM) agents represent a promising shift in human-AI interaction.<n>We highlight a critical usability gap in high-demand, mass-market applications.
arXiv Detail & Related papers (2025-05-23T11:40:58Z) - Confidence-Regulated Generative Diffusion Models for Reliable AI Agent Migration in Vehicular Metaverses [55.70043755630583]
vehicular AI agents are endowed with environment perception, decision-making, and action execution capabilities.<n>We propose a reliable vehicular AI agent migration framework, achieving reliable dynamic migration and efficient resource scheduling.<n>We develop a Confidence-regulated Generative Diffusion Model (CGDM) to efficiently generate AI agent migration decisions.
arXiv Detail & Related papers (2025-05-19T05:04:48Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
Large Language Models (LLMs) have revolutionized various domains, including natural language processing, data analysis, and software development.<n>We present Dynamic Action Re-Sampling (DARS), a novel inference time compute scaling approach for coding agents.<n>We evaluate our approach on SWE-Bench Lite benchmark, demonstrating that this scaling strategy achieves a pass@k score of 55% with Claude 3.5 Sonnet V2.
arXiv Detail & Related papers (2025-03-18T14:02:59Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions.<n>Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes.<n>We study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance.
arXiv Detail & Related papers (2025-02-18T17:12:26Z) - Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
Large Language Models (LLMs) have revolutionized artificial intelligence (AI) by enabling human like text generation and natural language understanding.<n>Retrieval Augmented Generation (RAG) has emerged as a solution, enhancing LLMs by integrating real time data retrieval to provide contextually relevant responses.<n>Agentic Retrieval-Augmented Generation (RAG) transcends these limitations by embedding autonomous AI agents into the RAG pipeline.
arXiv Detail & Related papers (2025-01-15T20:40:25Z) - Agentic AI-Driven Technical Troubleshooting for Enterprise Systems: A Novel Weighted Retrieval-Augmented Generation Paradigm [0.0]
This paper presents a novel agentic AI solution built on a Weighted Retrieval-Augmented Generation (RAG) Framework tailored for enterprise technical troubleshooting.<n>By dynamically weighting retrieval sources such as product manuals, internal knowledge bases, FAQ, and troubleshooting guides, the framework prioritizes the most relevant data.<n>Preliminary evaluations on large enterprise datasets demonstrate the framework's efficacy in improving troubleshooting accuracy, reducing resolution times, and adapting to varied technical challenges.
arXiv Detail & Related papers (2024-12-16T17:32:38Z) - Adaptive Stream Processing on Edge Devices through Active Inference [5.5676731834895765]
We present a novel Machine Learning paradigm based on Active Inference (AIF)
AIF describes how the brain constantly predicts and evaluates sensory information to decrease long-term surprise.
Our method guarantees full transparency on the decision making, making the interpretation of the results and the troubleshooting effortless.
arXiv Detail & Related papers (2024-09-26T15:12:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.