Towards Pervasive Distributed Agentic Generative AI -- A State of The Art
- URL: http://arxiv.org/abs/2506.13324v1
- Date: Mon, 16 Jun 2025 10:15:06 GMT
- Title: Towards Pervasive Distributed Agentic Generative AI -- A State of The Art
- Authors: Gianni Molinari, Fabio Ciravegna,
- Abstract summary: The rapid advancement of intelligent agents and Large Language Models (LLMs) is reshaping the pervasive computing field.<n>This survey outlines the architectural components of LLM agents and examines their deployment and evaluation across various scenarios.<n>It highlights state-of-the-art agent deployment strategies and applications, including local and distributed execution on resource-constrained devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of intelligent agents and Large Language Models (LLMs) is reshaping the pervasive computing field. Their ability to perceive, reason, and act through natural language understanding enables autonomous problem-solving in complex pervasive environments, including the management of heterogeneous sensors, devices, and data. This survey outlines the architectural components of LLM agents (profiling, memory, planning, and action) and examines their deployment and evaluation across various scenarios. Than it reviews computational and infrastructural advancements (cloud to edge) in pervasive computing and how AI is moving in this field. It highlights state-of-the-art agent deployment strategies and applications, including local and distributed execution on resource-constrained devices. This survey identifies key challenges of these agents in pervasive computing such as architectural, energetic and privacy limitations. It finally proposes what we called "Agent as a Tool", a conceptual framework for pervasive agentic AI, emphasizing context awareness, modularity, security, efficiency and effectiveness.
Related papers
- OS Agents: A Survey on MLLM-based Agents for General Computing Devices Use [101.57043903478257]
The dream to create AI assistants as capable and versatile as the fictional J.A.R.V.I.S from Iron Man has long captivated imaginations.<n>With the evolution of (multi-modal) large language models ((M)LLMs), this dream is closer to reality.<n>This survey aims to consolidate the state of OS Agents research, providing insights to guide both academic inquiry and industrial development.
arXiv Detail & Related papers (2025-08-06T14:33:45Z) - A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
arXiv Detail & Related papers (2025-07-28T17:59:05Z) - CREW-WILDFIRE: Benchmarking Agentic Multi-Agent Collaborations at Scale [4.464959191643012]
We introduce CREW-Wildfire, an open-source benchmark designed to evaluate next-generation multi-agent Agentic AI frameworks.<n> CREW-Wildfire offers procedurally generated wildfire response scenarios featuring large maps, heterogeneous agents, partial observability, dynamics, and long-horizon planning objectives.<n>We implement and evaluate several state-of-the-art LLM-based multi-agent Agentic AI frameworks, uncovering significant performance gaps.
arXiv Detail & Related papers (2025-07-07T16:33:42Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - The Cost of Dynamic Reasoning: Demystifying AI Agents and Test-Time Scaling from an AI Infrastructure Perspective [3.0868637098088403]
Large-language-model (LLM)-based AI agents have recently showcased impressive versatility by employing dynamic reasoning.<n>This paper presents the first comprehensive system-level analysis of AI agents, quantifying their resource usage, latency behavior, energy consumption, and test-time scaling strategies.<n>Our findings reveal that while agents improve accuracy with increased compute, they suffer from rapidly diminishing returns, widening latency variance, and unsustainable infrastructure costs.
arXiv Detail & Related papers (2025-06-04T14:37:54Z) - Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
We introduce the Internet of Agents (IoA) as a foundational framework that enables seamless interconnection, dynamic discovery, and collaborative orchestration among heterogeneous agents at scale.<n>We analyze the key operational enablers of IoA, including capability notification and discovery, adaptive communication protocols, dynamic task matching, consensus and conflict-resolution mechanisms, and incentive models.
arXiv Detail & Related papers (2025-05-12T02:04:37Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - A Comprehensive Survey of Agents for Computer Use: Foundations, Challenges, and Future Directions [4.904229981437243]
Agents for computer use (ACUs) are an emerging class of systems capable of executing complex tasks on digital devices.<n>Despite rapid progress, ACUs are not yet mature for everyday use.
arXiv Detail & Related papers (2025-01-27T15:44:02Z) - IntellAgent: A Multi-Agent Framework for Evaluating Conversational AI Systems [2.2810745411557316]
We introduce IntellAgent, a scalable, open-source framework to evaluate conversational AI systems.<n>IntellAgent automates the creation of synthetic benchmarks by combining policy-driven graph modeling, realistic event generation, and interactive user-agent simulations.<n>Our findings demonstrate that IntellAgent serves as an effective framework for advancing conversational AI by addressing challenges in bridging research and deployment.
arXiv Detail & Related papers (2025-01-19T14:58:35Z) - AIOpsLab: A Holistic Framework to Evaluate AI Agents for Enabling Autonomous Clouds [12.464941027105306]
AI for IT Operations (AIOps) aims to automate complex operational tasks, such as fault localization and root cause analysis, to reduce human workload and minimize customer impact.<n>Recent advances in Large Language Models (LLMs) and AI agents are revolutionizing AIOps by enabling end-to-end and multitask automation.<n>We present AIOPSLAB, a framework that deploys microservice cloud environments, injects faults, generates workloads, and exports telemetry data but also orchestrates these components and provides interfaces for interacting with and evaluating agents.
arXiv Detail & Related papers (2025-01-12T04:17:39Z) - Building AI Agents for Autonomous Clouds: Challenges and Design Principles [17.03870042416836]
AI for IT Operations (AIOps) aims to automate complex operational tasks, like fault localization and root cause analysis, thereby reducing human intervention and customer impact.
This vision paper lays the groundwork for such a framework by first framing the requirements and then discussing design decisions.
We propose AIOpsLab, a prototype implementation leveraging agent-cloud-interface that orchestrates an application, injects real-time faults using chaos engineering, and interfaces with an agent to localize and resolve the faults.
arXiv Detail & Related papers (2024-07-16T20:40:43Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.