CogMath: Assessing LLMs' Authentic Mathematical Ability from a Human Cognitive Perspective
- URL: http://arxiv.org/abs/2506.04481v1
- Date: Wed, 04 Jun 2025 22:00:52 GMT
- Title: CogMath: Assessing LLMs' Authentic Mathematical Ability from a Human Cognitive Perspective
- Authors: Jiayu Liu, Zhenya Huang, Wei Dai, Cheng Cheng, Jinze Wu, Jing Sha, Song Li, Qi Liu, Shijin Wang, Enhong Chen,
- Abstract summary: CogMath formalizes human reasoning process into 3 stages: emphproblem comprehension, emphproblem solving, and emphsolution summarization.<n>In each dimension, we develop an emphInquiry-emphJudge-emphReference'' multi-agent system to generate inquiries that assess LLMs' mastery from this dimension.<n>An LLM is considered to truly master a problem only when excelling in all inquiries from the 9 dimensions.
- Score: 68.94793547575343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although large language models (LLMs) show promise in solving complex mathematical tasks, existing evaluation paradigms rely solely on a coarse measure of overall answer accuracy, which are insufficient for assessing their authentic capabilities. In this paper, we propose \textbf{CogMath}, which comprehensively assesses LLMs' mathematical abilities through the lens of human cognition. Specifically, inspired by psychological theories, CogMath formalizes human reasoning process into 3 stages: \emph{problem comprehension}, \emph{problem solving}, and \emph{solution summarization}. Within these stages, we investigate perspectives such as numerical calculation, knowledge, and counterfactuals, and design a total of 9 fine-grained evaluation dimensions. In each dimension, we develop an ``\emph{Inquiry}-\emph{Judge}-\emph{Reference}'' multi-agent system to generate inquiries that assess LLMs' mastery from this dimension. An LLM is considered to truly master a problem only when excelling in all inquiries from the 9 dimensions. By applying CogMath on three benchmarks, we reveal that the mathematical capabilities of 7 mainstream LLMs are overestimated by 30\%-40\%. Moreover, we locate their strengths and weaknesses across specific stages/dimensions, offering in-depth insights to further enhance their reasoning abilities.
Related papers
- MathHay: An Automated Benchmark for Long-Context Mathematical Reasoning in LLMs [61.74749961334557]
MathHay is an automated benchmark designed to assess the long-context mathematical reasoning capabilities of LLMs.
We conduct extensive experiments on MathHay to assess the long-context mathematical reasoning abilities of eight top-performing models.
arXiv Detail & Related papers (2024-10-07T02:30:07Z) - MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBench is a new benchmark that rigorously assesses the mathematical capabilities of large language models.
MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills.
arXiv Detail & Related papers (2024-05-20T17:52:29Z) - Can LLMs Master Math? Investigating Large Language Models on Math Stack Exchange [25.419977967846144]
Large Language Models (LLMs) have demonstrated exceptional capabilities in various natural language tasks.
This paper explores the current limitations of LLMs in navigating complex mathematical problem-solving.
arXiv Detail & Related papers (2024-03-30T12:48:31Z) - MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems? [99.0305256706604]
We introduce MathVerse, an all-around visual math benchmark designed for an equitable and in-depth evaluation of MLLMs.
We meticulously collect 2,612 high-quality, multi-subject math problems with diagrams from publicly available sources.
This approach allows MathVerse to comprehensively assess whether and how much MLLMs can truly understand the visual diagrams for mathematical reasoning.
arXiv Detail & Related papers (2024-03-21T17:59:50Z) - FineMath: A Fine-Grained Mathematical Evaluation Benchmark for Chinese Large Language Models [44.63505885248145]
FineMath is a fine-grained mathematical evaluation benchmark dataset for assessing Chinese Large Language Models (LLMs)
FineMath is created to cover the major key mathematical concepts taught in elementary school math, which are divided into 17 categories of math word problems.
All the 17 categories of math word problems are manually annotated with their difficulty levels according to the number of reasoning steps required to solve these problems.
arXiv Detail & Related papers (2024-03-12T15:32:39Z) - MathScale: Scaling Instruction Tuning for Mathematical Reasoning [70.89605383298331]
Large language models (LLMs) have demonstrated remarkable capabilities in problem-solving.
However, their proficiency in solving mathematical problems remains inadequate.
We propose MathScale, a simple and scalable method to create high-quality mathematical reasoning data.
arXiv Detail & Related papers (2024-03-05T11:42:59Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.