論文の概要: Ignoring Directionality Leads to Compromised Graph Neural Network Explanations
- arxiv url: http://arxiv.org/abs/2506.04608v1
- Date: Thu, 05 Jun 2025 03:52:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 21:53:49.51741
- Title: Ignoring Directionality Leads to Compromised Graph Neural Network Explanations
- Title(参考訳): 方向性の無視は、妥協されたグラフニューラルネットワークの説明につながる
- Authors: Changsheng Sun, Xinke Li, Jin Song Dong,
- Abstract要約: 方向性のセマンティクスを保存することは、説明の質を著しく向上させる。
これらの知見は、セキュリティクリティカルなアプリケーションにおいて、方向性を意識したGNN説明可能性の必要性を強調している。
- 参考スコア(独自算出の注目度): 11.529046859169469
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are increasingly used in critical domains, where reliable explanations are vital for supporting human decision-making. However, the common practice of graph symmetrization discards directional information, leading to significant information loss and misleading explanations. Our analysis demonstrates how this practice compromises explanation fidelity. Through theoretical and empirical studies, we show that preserving directional semantics significantly improves explanation quality, ensuring more faithful insights for human decision-makers. These findings highlight the need for direction-aware GNN explainability in security-critical applications.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、人間の意思決定を支援する上で信頼性の高い説明が不可欠である重要なドメインで、ますます利用されている。
しかし、グラフ対称性の一般的な実践は、方向情報を捨て、重要な情報損失と誤解を招く説明をもたらす。
私たちの分析は、このプラクティスが説明の忠実さを損なうことを示す。
理論的および実証的研究を通じて、方向性のセマンティクスの保存は説明の質を著しく向上させ、人間の意思決定者にとってより忠実な洞察を確実にすることを示した。
これらの知見は、セキュリティクリティカルなアプリケーションにおいて、方向性を意識したGNN説明可能性の必要性を強調している。
関連論文リスト
- Rewiring Techniques to Mitigate Oversquashing and Oversmoothing in GNNs: A Survey [0.0]
グラフニューラルネットワーク(GNN)は,グラフ構造化データから学習するための強力なツールだが,その有効性は2つの重要な課題によって制約されることが多い。
オーバーキャッシング(Oversquashing) – 遠いノードからの情報の過剰な圧縮が大きな情報損失と過度なスムース化をもたらし、繰り返しメッセージパッシングの繰り返しがノード表現を均質化し、意味のある区別を隠蔽する。
本研究では,グラフトポロジを改良して情報拡散を高めることで,これらの構造的ボトルネックに対処する手法であるグラフリウィリング手法について検討する。
論文 参考訳(メタデータ) (2024-11-26T13:38:12Z) - Uncertainty in Graph Neural Networks: A Survey [47.785948021510535]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks [32.345435955298825]
グラフニューラルネットワーク(GNN)は、グラフノード間のメッセージパッシングを介してグラフィカルデータの依存性構造を利用するニューラルネットワークである。
GNN説明可能性の研究における主な課題は、これらの説明機能の性能を評価するための忠実度尺度を提供することである。
本稿では,この基礎的課題について考察し,その限界を浮き彫りにする。
論文 参考訳(メタデータ) (2023-10-03T06:25:14Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - RES: A Robust Framework for Guiding Visual Explanation [8.835733039270364]
本研究では,不正確な境界,不完全領域,不整合なアノテーションの分布を扱う新しい目的を開発することにより,視覚的説明を導くための枠組みを提案する。
2つの実世界の画像データセットに対する実験は、説明の理性およびバックボーンモデルの性能を向上させる上で、提案フレームワークの有効性を実証している。
論文 参考訳(メタデータ) (2022-06-27T16:06:27Z) - Towards Explanation for Unsupervised Graph-Level Representation Learning [108.31036962735911]
既存の説明手法は,教師付き設定,例えばノード分類,グラフ分類に重点を置いているが,教師なしグラフレベルの表現学習に関する説明はまだ探索されていない。
本稿では,非教師付きグラフ表現における説明問題に対処するために,インフォメーション・ボトルネックの原則(IB)を推進し,新しい原理であるtextitUnsupervised Subgraph Information Bottleneck(USIB)を導出する。
また,グラフ表現とラベル空間上の説明部分グラフの関連性も理論的に解析し,表現の堅牢性が説明部分グラフの忠実性に寄与することを明らかにする。
論文 参考訳(メタデータ) (2022-05-20T02:50:15Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。