論文の概要: Identifying Reliable Evaluation Metrics for Scientific Text Revision
- arxiv url: http://arxiv.org/abs/2506.04772v1
- Date: Thu, 05 Jun 2025 09:00:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 21:53:49.615541
- Title: Identifying Reliable Evaluation Metrics for Scientific Text Revision
- Title(参考訳): 科学的テキスト改訂のための信頼性評価指標の同定
- Authors: Léane Jourdan, Florian Boudin, Richard Dufour, Nicolas Hernandez,
- Abstract要約: ROUGEやBERTScoreといった従来のメトリクスは主に、意味のある改善を捉えるのではなく、類似性に重点を置いている。
まず手動による注釈研究を行い、異なる修正の質を評価する。
そこで本研究では,NLPドメインの参照不要評価指標について検討する。
LLM-as-a-judge評価とタスク固有のメトリクスを組み合わせたハイブリッドアプローチが,最も信頼性の高いリビジョン品質評価を提供することがわかった。
- 参考スコア(独自算出の注目度): 7.503795054002405
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Evaluating text revision in scientific writing remains a challenge, as traditional metrics such as ROUGE and BERTScore primarily focus on similarity rather than capturing meaningful improvements. In this work, we analyse and identify the limitations of these metrics and explore alternative evaluation methods that better align with human judgments. We first conduct a manual annotation study to assess the quality of different revisions. Then, we investigate reference-free evaluation metrics from related NLP domains. Additionally, we examine LLM-as-a-judge approaches, analysing their ability to assess revisions with and without a gold reference. Our results show that LLMs effectively assess instruction-following but struggle with correctness, while domain-specific metrics provide complementary insights. We find that a hybrid approach combining LLM-as-a-judge evaluation and task-specific metrics offers the most reliable assessment of revision quality.
- Abstract(参考訳): ROUGEやBERTScoreのような伝統的なメトリクスは、意味のある改善を捉えるのではなく、主に類似性に焦点を当てている。
本研究では,これらの指標の限界を分析し,人間の判断に適合する代替評価手法を検討する。
まず手動による注釈研究を行い、異なる修正の質を評価する。
そこで本研究では,NLPドメインの参照不要評価指標について検討する。
また, LLM-as-a-judgeアプローチについて検討し, ゴールドレファレンスを伴わないリビジョンを評価する能力について検討した。
この結果から,LLMは命令追従を効果的に評価するが正確性に苦しむ一方,ドメイン固有の指標は相補的な洞察を与えることがわかった。
LLM-as-a-judge評価とタスク固有のメトリクスを組み合わせたハイブリッドアプローチが,最も信頼性の高いリビジョン品質評価を提供することがわかった。
関連論文リスト
- DeepCRCEval: Revisiting the Evaluation of Code Review Comment Generation [11.010557279355885]
本研究は,先行研究や開発者インタビューから得られた新しい基準を用いて,ベンチマークコメントを実証的に分析する。
評価フレームワークであるDeepCRCEvalは、人間の評価器とLarge Language Models(LLM)を統合し、現在の手法を総合的に再評価する。
論文 参考訳(メタデータ) (2024-12-24T08:53:54Z) - Towards Understanding the Robustness of LLM-based Evaluations under Perturbations [9.944512689015998]
大言語モデル(LLM)は、要約やダイアログベースのタスクにおいて、非標準化メトリクスの自動評価器として機能する。
人間の判断に比較して,LLMが品質評価指標としていかに優れているかを検討するために,複数のプロンプト戦略にまたがる実験を行った。
論文 参考訳(メタデータ) (2024-12-12T13:31:58Z) - RevisEval: Improving LLM-as-a-Judge via Response-Adapted References [95.29800580588592]
RevisEvalは、応答適応参照による新しいテキスト生成評価パラダイムである。
RevisEvalは、理想的な参照が評価される応答に対する必要な関連性を維持するべきであるというキーオブザーバーによって駆動される。
論文 参考訳(メタデータ) (2024-10-07T16:50:47Z) - Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text [12.879551933541345]
大きな言語モデル(LLM)は、人間のような会話を生成できる。
BLEUやROUGEのような従来のメトリクスは、このような生成出力の微妙な意味と文脈的な豊かさを捉えるには不十分である。
本稿では,複数のLSM-as-judgesを活用することで,評価プロセスを自動化する基準誘導型判定手法を提案する。
論文 参考訳(メタデータ) (2024-08-17T16:01:45Z) - Large Language Models as Evaluators for Recommendation Explanations [23.938202791437337]
我々は,LLMがレコメンデーション・リコメンデーション・リコメンデーションの評価に役立てられるかどうかを検討する。
我々は,評価者ラベルとユーザが提供する真実との相関を計測するために,3段階のメタ評価戦略を設計し,適用する。
本研究は,LLMを評価対象として活用することは,レコメンデーション説明文の評価において,正確かつ再現可能で費用対効果の高いソリューションであることを示す。
論文 参考訳(メタデータ) (2024-06-05T13:23:23Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - From Model-centered to Human-Centered: Revision Distance as a Metric for Text Evaluation in LLMs-based Applications [26.857056013032263]
大規模言語モデル(LLM)の評価は、特に実践的な応用の文脈において、基本的なものである。
我々の研究は、AIを活用した筆記支援システムの文脈において、モデル中心から人中心評価に焦点を移す。
論文 参考訳(メタデータ) (2024-04-10T15:46:08Z) - Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators [48.54465599914978]
大規模言語モデル(LLM)は、生成された自然言語の品質を評価するための自動評価器として有望な能力を示した。
LLMは依然として評価のバイアスを示しており、人間の評価と整合したコヒーレントな評価を生成するのに苦労することが多い。
Pairwise-preference Search (PAIRS) は、LLMを用いた不確実性誘導検索に基づくランクアグリゲーション手法で、局所的にペアワイズ比較を行い、グローバルに候補テキストを効率よくランク付けする。
論文 参考訳(メタデータ) (2024-03-25T17:11:28Z) - TrustScore: Reference-Free Evaluation of LLM Response Trustworthiness [58.721012475577716]
大規模言語モデル(LLM)は、様々な領域にまたがる印象的な能力を示しており、その実践的応用が急増している。
本稿では,行動整合性の概念に基づくフレームワークであるTrustScoreを紹介する。
論文 参考訳(メタデータ) (2024-02-19T21:12:14Z) - Exploring the Reliability of Large Language Models as Customized Evaluators for Diverse NLP Tasks [65.69651759036535]
大規模言語モデル(LLM)が人間にとって信頼できる代替手段であるかどうかを解析する。
本稿では、従来のタスク(例えば、ストーリー生成)とアライメントタスク(例えば、数学推論)の両方について検討する。
LLM評価器は不要な基準を生成したり、重要な基準を省略することができる。
論文 参考訳(メタデータ) (2023-10-30T17:04:35Z) - Revisiting the Gold Standard: Grounding Summarization Evaluation with
Robust Human Evaluation [136.16507050034755]
要約のための既存の人間の評価研究は、アノテータ間の合意が低かったり、スケールが不十分だったりしている。
細粒度セマンティック・ユニットをベースとした改良された要約サリエンス・プロトコルであるAtomic Content Units (ACUs)を提案する。
ロバスト・サムライゼーション・アセスメント(RoSE)ベンチマークは,28の上位性能システム上で22,000の要約レベルのアノテーションからなる大規模な人的評価データセットである。
論文 参考訳(メタデータ) (2022-12-15T17:26:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。