TIMING: Temporality-Aware Integrated Gradients for Time Series Explanation
- URL: http://arxiv.org/abs/2506.05035v1
- Date: Thu, 05 Jun 2025 13:40:40 GMT
- Title: TIMING: Temporality-Aware Integrated Gradients for Time Series Explanation
- Authors: Hyeongwon Jang, Changhun Kim, Eunho Yang,
- Abstract summary: Conventional Integrated Gradients (IG) effectively capture critical points with both positive and negative impacts on predictions.<n>To overcome these challenges, we introduce TIMING, which enhances IG by incorporating temporal awareness while maintaining its theoretical properties.
- Score: 30.866780156914512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent explainable artificial intelligence (XAI) methods for time series primarily estimate point-wise attribution magnitudes, while overlooking the directional impact on predictions, leading to suboptimal identification of significant points. Our analysis shows that conventional Integrated Gradients (IG) effectively capture critical points with both positive and negative impacts on predictions. However, current evaluation metrics fail to assess this capability, as they inadvertently cancel out opposing feature contributions. To address this limitation, we propose novel evaluation metrics-Cumulative Prediction Difference (CPD) and Cumulative Prediction Preservation (CPP)-to systematically assess whether attribution methods accurately identify significant positive and negative points in time series XAI. Under these metrics, conventional IG outperforms recent counterparts. However, directly applying IG to time series data may lead to suboptimal outcomes, as generated paths ignore temporal relationships and introduce out-of-distribution samples. To overcome these challenges, we introduce TIMING, which enhances IG by incorporating temporal awareness while maintaining its theoretical properties. Extensive experiments on synthetic and real-world time series benchmarks demonstrate that TIMING outperforms existing time series XAI baselines. Our code is available at https://github.com/drumpt/TIMING.
Related papers
- BayesTTA: Continual-Temporal Test-Time Adaptation for Vision-Language Models via Gaussian Discriminant Analysis [41.09181390655176]
Vision-language models (VLMs) such as CLIP achieve strong zero-shot recognition but degrade significantly under textittemporally evolving distribution shifts common in real-world scenarios.<n>We formalize this practical problem as textitContinual-Temporal Test-Time Adaptation (CT-TTA), where test distributions evolve gradually over time.<n>We propose textitBayesTTA, a Bayesian adaptation framework that enforces temporally consistent predictions and dynamically aligns visual representations.
arXiv Detail & Related papers (2025-07-11T14:02:54Z) - Generative Regression Based Watch Time Prediction for Short-Video Recommendation [36.95095097454143]
Watch time prediction has emerged as a pivotal task in short video recommendation systems.<n>Recent studies have attempted to address these issues by converting the continuous watch time estimation into an ordinal regression task.<n>We propose a novel Generative Regression (GR) framework that reformulates WTP as a sequence generation task.
arXiv Detail & Related papers (2024-12-28T16:48:55Z) - Temporal-Aware Evaluation and Learning for Temporal Graph Neural Networks [2.3043270848984]
Temporal Graph Neural Networks (TGNNs) are a family of graph neural networks designed to model and learn dynamic information from temporal graphs.<n>This paper investigates the commonly used evaluation metrics for TGNNs and illustrates the failure mechanisms of these metrics in capturing essential temporal structures.<n>We introduce a new volatility-aware evaluation metric (termed volatility cluster statistics) designed for a more refined analysis of model temporal performance.
arXiv Detail & Related papers (2024-12-10T07:56:33Z) - Enhancing reliability in prediction intervals using point forecasters: Heteroscedastic Quantile Regression and Width-Adaptive Conformal Inference [0.0]
We argue that standard measures alone are inadequate when constructing prediction intervals.<n>We propose combining Heteroscedastic Quantile Regression with Width-Adaptive Conformal Inference.<n>Our results show that this combined approach meets or surpasses typical benchmarks for validity and efficiency.
arXiv Detail & Related papers (2024-06-21T06:51:13Z) - Exploring the Performance of Continuous-Time Dynamic Link Prediction Algorithms [14.82820088479196]
Dynamic Link Prediction (DLP) addresses the prediction of future links in evolving networks.
In this work, we contribute tools to perform such a comprehensive evaluation.
We describe an exhaustive taxonomy of negative sampling methods that can be used at evaluation time.
arXiv Detail & Related papers (2024-05-27T14:03:28Z) - PATE: Proximity-Aware Time series anomaly Evaluation [3.0377067713090633]
Traditional performance metrics assume iid data and fail to capture the complex temporal dynamics and specific characteristics of time series anomalies.
We introduce Proximity-Aware Time series anomaly Evaluation (PATE), a novel evaluation metric that incorporates the temporal relationship between prediction and anomaly intervals.
Our experiments with synthetic and real-world datasets show the superiority of PATE in providing more sensible and accurate evaluations.
arXiv Detail & Related papers (2024-05-20T15:06:36Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Performative Time-Series Forecasting [64.03865043422597]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.<n>We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.<n>We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - QBSD: Quartile-Based Seasonality Decomposition for Cost-Effective RAN KPI Forecasting [0.18416014644193066]
We introduce QBSD, a live single-step forecasting approach tailored to optimize the trade-off between accuracy and computational complexity.
QBSD has shown significant success with our real network RAN datasets of over several thousand cells.
Results demonstrate that the proposed method excels in runtime efficiency compared to the leading algorithms available.
arXiv Detail & Related papers (2023-06-09T15:59:27Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Generic Temporal Reasoning with Differential Analysis and Explanation [61.96034987217583]
We introduce a novel task named TODAY that bridges the gap with temporal differential analysis.
TODAY evaluates whether systems can correctly understand the effect of incremental changes.
We show that TODAY's supervision style and explanation annotations can be used in joint learning.
arXiv Detail & Related papers (2022-12-20T17:40:03Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
The paper takes a generative perspective on policy evaluation via temporal-difference (TD) learning.
The OS-GPTD approach is developed to estimate the value function for a given policy by observing a sequence of state-reward pairs.
To alleviate the limited expressiveness associated with a single fixed kernel, a weighted ensemble (E) of GP priors is employed to yield an alternative scheme.
arXiv Detail & Related papers (2021-12-01T23:15:09Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.