Temporal-Aware Evaluation and Learning for Temporal Graph Neural Networks
- URL: http://arxiv.org/abs/2412.07273v2
- Date: Sun, 15 Dec 2024 04:10:49 GMT
- Title: Temporal-Aware Evaluation and Learning for Temporal Graph Neural Networks
- Authors: Junwei Su, Shan Wu,
- Abstract summary: Temporal Graph Neural Networks (TGNNs) are a family of graph neural networks designed to model and learn dynamic information from temporal graphs.
This paper investigates the commonly used evaluation metrics for TGNNs and illustrates the failure mechanisms of these metrics in capturing essential temporal structures.
We introduce a new volatility-aware evaluation metric (termed volatility cluster statistics) designed for a more refined analysis of model temporal performance.
- Score: 2.3043270848984
- License:
- Abstract: Temporal Graph Neural Networks (TGNNs) are a family of graph neural networks designed to model and learn dynamic information from temporal graphs. Given their substantial empirical success, there is an escalating interest in TGNNs within the research community. However, the majority of these efforts have been channelled towards algorithm and system design, with the evaluation metrics receiving comparatively less attention. Effective evaluation metrics are crucial for providing detailed performance insights, particularly in the temporal domain. This paper investigates the commonly used evaluation metrics for TGNNs and illustrates the failure mechanisms of these metrics in capturing essential temporal structures in the predictive behaviour of TGNNs. We provide a mathematical formulation of existing performance metrics and utilize an instance-based study to underscore their inadequacies in identifying volatility clustering (the occurrence of emerging errors within a brief interval). This phenomenon has profound implications for both algorithm and system design in the temporal domain. To address this deficiency, we introduce a new volatility-aware evaluation metric (termed volatility cluster statistics), designed for a more refined analysis of model temporal performance. Additionally, we demonstrate how this metric can serve as a temporal-volatility-aware training objective to alleviate the clustering of temporal errors. Through comprehensive experiments on various TGNN models, we validate our analysis and the proposed approach. The empirical results offer revealing insights: 1) existing TGNNs are prone to making errors with volatility clustering, and 2) TGNNs with different mechanisms to capture temporal information exhibit distinct volatility clustering patterns. Our empirical findings demonstrate that our proposed training objective effectively reduces volatility clusters in error.
Related papers
- Mind the truncation gap: challenges of learning on dynamic graphs with recurrent architectures [10.434476078553786]
Continuous-time dynamic graphs (CTDGs) pose challenges for machine learning (ML) approaches.
We show that a short truncation of backpropagation-through-time (BPTT) can limit the learning of dependencies beyond a single hop.
We argue that understanding and addressing this gap is essential as the importance of CTDGs grows.
arXiv Detail & Related papers (2024-12-30T16:07:41Z) - GINTRIP: Interpretable Temporal Graph Regression using Information bottleneck and Prototype-based method [7.570969633244954]
We introduce a novel approach to enhance the interpretability of temporal graph regression models.
We derive a novel theoretical bound on mutual information (MI), extending the applicability of IB principles to graph regression tasks.
Our model is evaluated on real-world traffic datasets, outperforming existing methods in both forecasting accuracy and interpretability-related metrics.
arXiv Detail & Related papers (2024-09-17T08:58:40Z) - Spatio-Temporal Attention Graph Neural Network for Remaining Useful Life
Prediction [1.831835396047386]
This study presents the Spatio-Temporal Attention Graph Neural Network.
Our model combines graph neural networks and temporal convolutional neural networks for spatial and temporal feature extraction.
Comprehensive experiments were conducted on the C-MAPSS dataset to evaluate the impact of unified versus clustering normalization.
arXiv Detail & Related papers (2024-01-29T08:49:53Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network [7.876789380671075]
We propose a graph neural network approach with score-based method aiming at learning a sparse DAG.
We demonstrate methods with graph neural network significantly outperformed other state-of-the-art methods with dynamic bayesian networking inference.
arXiv Detail & Related papers (2023-01-28T02:49:13Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Spatially Focused Attack against Spatiotemporal Graph Neural Networks [8.665638585791235]
Deep Spatiotemporal graph neural networks (GNNs) have achieved great success in traffic forecasting applications.
If GNNs are vulnerable in real-world prediction applications, a hacker can easily manipulate the results and cause serious traffic congestion and even a city-scale breakdown.
arXiv Detail & Related papers (2021-09-10T01:31:53Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
Graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice.
We provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems.
arXiv Detail & Related papers (2020-06-25T00:45:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.