論文の概要: Semi-Implicit Variational Inference via Kernelized Path Gradient Descent
- arxiv url: http://arxiv.org/abs/2506.05088v1
- Date: Thu, 05 Jun 2025 14:34:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 21:53:49.760832
- Title: Semi-Implicit Variational Inference via Kernelized Path Gradient Descent
- Title(参考訳): カーネル化パスグラディエントDescenceによる半インプシット変分推論
- Authors: Tobias Pielok, Bernd Bischl, David Rügamer,
- Abstract要約: Kullback-Leibler分散を用いたトレーニングは、高次元設定における高分散とバイアスのために難しい場合がある。
非パラメトリックな平滑化によるトレーニングを安定化するカーネル化されたKL分散推定器を提案する。
関数空間における我々の手法のバイアスは良性であり、より安定で効率的な最適化をもたらす。
- 参考スコア(独自算出の注目度): 12.300415631357406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-implicit variational inference (SIVI) is a powerful framework for approximating complex posterior distributions, but training with the Kullback-Leibler (KL) divergence can be challenging due to high variance and bias in high-dimensional settings. While current state-of-the-art semi-implicit variational inference methods, particularly Kernel Semi-Implicit Variational Inference (KSIVI), have been shown to work in high dimensions, training remains moderately expensive. In this work, we propose a kernelized KL divergence estimator that stabilizes training through nonparametric smoothing. To further reduce the bias, we introduce an importance sampling correction. We provide a theoretical connection to the amortized version of the Stein variational gradient descent, which estimates the score gradient via Stein's identity, showing that both methods minimize the same objective, but our semi-implicit approach achieves lower gradient variance. In addition, our method's bias in function space is benign, leading to more stable and efficient optimization. Empirical results demonstrate that our method outperforms or matches state-of-the-art SIVI methods in both performance and training efficiency.
- Abstract(参考訳): 半単純変分推論(SIVI)は複雑な後続分布を近似する強力なフレームワークであるが、KL(Kullback-Leibler)の発散による訓練は、高次元設定における高分散とバイアスのために困難である。
現在の最先端の半単純変分推論法、特にKernel Semi-Implicit Variational Inference (KSIVI)は、高次元で動作することが示されているが、トレーニングは適度に高価である。
本研究では,非パラメトリックな平滑化によるトレーニングを安定化するカーネル化KL分散推定器を提案する。
さらにバイアスを低減するために,重要サンプリング補正を導入する。
我々は、スタイン変分勾配勾配の補正版に理論的に関連し、スタインの同一性を通してスコア勾配を推定し、両方の手法が同じ目的を最小化することを示したが、我々の半単純アプローチは低い勾配分散を達成する。
さらに,関数空間のバイアスは良性であり,より安定かつ効率的に最適化できる。
実験結果から,本手法は性能とトレーニング効率の両方において,最先端のSIVI手法よりも優れ,適合していることが示された。
関連論文リスト
- Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - Diagonalisation SGD: Fast & Convergent SGD for Non-Differentiable Models
via Reparameterisation and Smoothing [1.6114012813668932]
微分不可能な関数を断片的に定義するための単純なフレームワークを導入し,スムース化を得るための体系的なアプローチを提案する。
我々の主な貢献は SGD の新たな変種 Diagonalisation Gradient Descent であり、滑らかな近似の精度を徐々に向上させる。
我々のアプローチは単純で高速で安定であり、作業正規化分散の桁数削減を実現している。
論文 参考訳(メタデータ) (2024-02-19T00:43:22Z) - Byzantine-Robust Decentralized Stochastic Optimization with Stochastic
Gradient Noise-Independent Learning Error [25.15075119957447]
分散ネットワーク上でのビザンチン-ロバスト最適化について検討し、各エージェントが近隣のエージェントと定期的に通信して局所モデルを交換し、勾配降下(SGD)により独自の局所モデルを更新する。
このような手法の性能は、最適化プロセス中に逆向きに実行される未知数のビザンチンエージェントに影響される。
論文 参考訳(メタデータ) (2023-08-10T02:14:23Z) - Why is parameter averaging beneficial in SGD? An objective smoothing perspective [13.863368438870562]
勾配降下(SGD)とその暗黙バイアスは、しばしばミニマの鋭さによって特徴づけられる。
Izmailov et alで実証的に観察された一般用平均SGDアルゴリズムについて検討した。
本研究では,SGDの平均値が局所的な局所最小値を回避するスムーズな目的を効率的に最適化できることを証明した。
論文 参考訳(メタデータ) (2023-02-18T16:29:06Z) - Learning Discretized Neural Networks under Ricci Flow [48.47315844022283]
低精度重みとアクティベーションからなる離散ニューラルネットワーク(DNN)について検討する。
DNNは、訓練中に微分不可能な離散関数のために無限あるいはゼロの勾配に悩まされる。
論文 参考訳(メタデータ) (2023-02-07T10:51:53Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
本稿では, ステップサイズが一定であるSEG法の解析を行い, 良好な収束をもたらす手法のバリエーションを示す。
平均化で拡張した場合、SEGはナッシュ平衡に確実に収束し、スケジュールされた再起動手順を組み込むことで、その速度が確実に加速されることを証明した。
論文 参考訳(メタデータ) (2021-06-30T17:51:36Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
二進的アクティベーションや二進的重みを持つニューラルネットワークでは、勾配降下によるトレーニングは複雑である。
そこで本研究では,サンプリングと解析近似を併用した新しい推定法を提案する。
勾配推定において高い精度を示し、深部畳み込みモデルにおいてより安定かつ優れた訓練を行うことを示す。
論文 参考訳(メタデータ) (2020-06-04T21:51:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。