Through-the-Wall Radar Human Activity Recognition WITHOUT Using Neural Networks
- URL: http://arxiv.org/abs/2506.05169v1
- Date: Thu, 05 Jun 2025 15:45:08 GMT
- Title: Through-the-Wall Radar Human Activity Recognition WITHOUT Using Neural Networks
- Authors: Weicheng Gao,
- Abstract summary: I would like to try to return to the original path by attempting to eschew neural networks to achieve the TWR HAR task.<n>The micro-Doppler segmentation feature is discretized into a two-dimensional point cloud.<n>The effectiveness of the proposed method is demonstrated by numerical simulated and measured experiments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: After a few years of research in the field of through-the-wall radar (TWR) human activity recognition (HAR), I found that we seem to be stuck in the mindset of training on radar image data through neural network models. The earliest related works in this field based on template matching did not require a training process, and I believe they have never died. Because these methods possess a strong physical interpretability and are closer to the basis of theoretical signal processing research. In this paper, I would like to try to return to the original path by attempting to eschew neural networks to achieve the TWR HAR task and challenge to achieve intelligent recognition as neural network models. In detail, the range-time map and Doppler-time map of TWR are first generated. Then, the initial regions of the human target foreground and noise background on the maps are determined using corner detection method, and the micro-Doppler signature is segmented using the multiphase active contour model. The micro-Doppler segmentation feature is discretized into a two-dimensional point cloud. Finally, the topological similarity between the resulting point cloud and the point clouds of the template data is calculated using Mapper algorithm to obtain the recognition results. The effectiveness of the proposed method is demonstrated by numerical simulated and measured experiments. The open-source code of this work is released at: https://github.com/JoeyBGOfficial/Through-the-Wall-Radar-Human-Activity-Recognition-Without-Using-Ne ural-Networks.
Related papers
- Generalizable Indoor Human Activity Recognition Method Based on Micro-Doppler Corner Point Cloud and Dynamic Graph Learning [12.032590125621155]
Through-the-wall radar (TWR) human activity recognition can be achieved by fusing micro-Doppler signature extraction and intelligent decision-making algorithms.
This paper proposes a generalizable indoor human activity recognition method based on micro-Doppler corner point cloud and dynamic graph learning.
arXiv Detail & Related papers (2024-10-10T02:24:07Z) - Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
We propose a transformer-based deep homography estimation (DHE) network.
It takes the dense feature map extracted by a backbone network as input and fits homography for fast and learnable geometric verification.
Experiments on benchmark datasets show that our method can outperform several state-of-the-art methods.
arXiv Detail & Related papers (2024-02-25T13:22:17Z) - Radio Map Estimation -- An Open Dataset with Directive Transmitter
Antennas and Initial Experiments [49.61405888107356]
We release a dataset of simulated path loss radio maps together with realistic city maps from real-world locations and aerial images from open datasources.
Initial experiments regarding model architectures, input feature design and estimation of radio maps from aerial images are presented.
arXiv Detail & Related papers (2024-01-12T14:56:45Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - Neural-prior stochastic block model [0.0]
We propose to model the communities as being determined by the node attributes rather than the opposite.
We propose an algorithm, stemming from statistical physics, based on a combination of belief propagation and approximate message passing.
The proposed model and algorithm can be used as a benchmark for both theory and algorithms.
arXiv Detail & Related papers (2023-03-17T14:14:54Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Neural Maximum A Posteriori Estimation on Unpaired Data for Motion
Deblurring [87.97330195531029]
We propose a Neural Maximum A Posteriori (NeurMAP) estimation framework for training neural networks to recover blind motion information and sharp content from unpaired data.
The proposed NeurMAP is an approach to existing deblurring neural networks, and is the first framework that enables training image deblurring networks on unpaired datasets.
arXiv Detail & Related papers (2022-04-26T08:09:47Z) - A Plug-and-Play Approach to Multiparametric Quantitative MRI: Image
Reconstruction using Pre-Trained Deep Denoisers [4.910318162000904]
This paper proposes an iterative deep learning reconstruction approach to MRF which is adaptive to the forward acquisition process.
A CNN denoiser model is then tested on two simulated acquisition processes with distinct sub-sampling patterns.
The results show consistent consistent de-removal performance against both acquisition schemes and accurate mapping of tissues' quantitative bioproperties.
arXiv Detail & Related papers (2022-02-10T09:35:25Z) - Keypoint Message Passing for Video-based Person Re-Identification [106.41022426556776]
Video-based person re-identification (re-ID) is an important technique in visual surveillance systems which aims to match video snippets of people captured by different cameras.
Existing methods are mostly based on convolutional neural networks (CNNs), whose building blocks either process local neighbor pixels at a time, or, when 3D convolutions are used to model temporal information, suffer from the misalignment problem caused by person movement.
In this paper, we propose to overcome the limitations of normal convolutions with a human-oriented graph method. Specifically, features located at person joint keypoints are extracted and connected as a spatial-temporal graph
arXiv Detail & Related papers (2021-11-16T08:01:16Z) - Denoising IMU Gyroscopes with Deep Learning for Open-Loop Attitude
Estimation [0.0]
This paper proposes a learning method for denoising gyroscopes of Inertial Measurement Units (IMUs) using ground truth data.
The obtained algorithm outperforms the state-of-the-art on the (unseen) test sequences.
arXiv Detail & Related papers (2020-02-25T08:04:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.