論文の概要: Towards a Unified System of Representation for Continuity and Discontinuity in Natural Language
- arxiv url: http://arxiv.org/abs/2506.05235v1
- Date: Thu, 05 Jun 2025 16:54:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 21:53:49.832666
- Title: Towards a Unified System of Representation for Continuity and Discontinuity in Natural Language
- Title(参考訳): 自然言語の連続性と不連続性のための統一的表現システムを目指して
- Authors: Ratna Kandala, Prakash Mondal,
- Abstract要約: 自然言語の構造における連続性と不連続性の両方を統一的に表現するシステムを提案する。
特に, 句構造文法 (PSG) は選挙区概念, 依存文法 (DG) は首依存関係, カテゴリー文法 (CG) は関手論関係に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Syntactic discontinuity is a grammatical phenomenon in which a constituent is split into more than one part because of the insertion of an element which is not part of the constituent. This is observed in many languages across the world such as Turkish, Russian, Japanese, Warlpiri, Navajo, Hopi, Dyirbal, Yidiny etc. Different formalisms/frameworks in current linguistic theory approach the problem of discontinuous structures in different ways. Each framework/formalism has widely been viewed as an independent and non-converging system of analysis. In this paper, we propose a unified system of representation for both continuity and discontinuity in structures of natural languages by taking into account three formalisms, in particular, Phrase Structure Grammar (PSG) for its widely used notion of constituency, Dependency Grammar (DG) for its head-dependent relations, and Categorial Grammar (CG) for its focus on functor-argument relations. We attempt to show that discontinuous expressions as well as continuous structures can be analysed through a unified mathematical derivation incorporating the representations of linguistic structure in these three grammar formalisms.
- Abstract(参考訳): 構文的不連続性(syntactic discontinuity)は、成分が成分の一部ではない元素を挿入するため、成分が複数の部分に分割される文法現象である。
これは、トルコ語、ロシア語、日本語、ヴァルピリ語、ナヴァホ語、ホピ語、ダイアバル語、イディニー語など、世界中の多くの言語で見られる。
現在の言語理論における異なる形式主義/枠組みは、異なる方法で不連続構造の問題にアプローチする。
それぞれのフレームワーク/形式主義は、独立的で非収束的な分析システムとして広く見なされてきた。
本稿では,自然言語の構造の連続性と不連続性を両立させる統一的な表現システムを提案する。
これらの3つの文法形式に言語構造の表現を組み込んだ統一数学的導出により,不連続表現と連続構造が解析可能であることを示す。
関連論文リスト
- Counting trees: A treebank-driven exploration of syntactic variation in speech and writing across languages [0.0]
我々は、構文構造をデレクシカルな依存(サブ)ツリーとして定義し、音声および記述されたユニバーサル依存ツリーバンクからそれらを抽出する。
各コーパスについて, 構文的在庫の大きさ, 多様性, 分布, その重なり合い, 音声の最も特徴的な構造を解析した。
その結果、どちらの言語でも、音声コーパスは、記述されたコーパスよりも、より多様で多様な構文構造を含まないことが明らかとなった。
論文 参考訳(メタデータ) (2025-05-28T18:43:26Z) - A Complexity-Based Theory of Compositionality [53.025566128892066]
AIでは、構成表現は配布外一般化の強力な形式を可能にすることができる。
ここでは、構成性に関する直観を考慮し、拡張する、表現的構成性と呼ばれる定義を提案する。
私たちは、AIと認知科学の両方において、文学全体から異なる直観を統一する方法を示します。
論文 参考訳(メタデータ) (2024-10-18T18:37:27Z) - The Problem of Alignment [1.2277343096128712]
大規模言語モデルは、大きなコーパスから統計的パターンとして学習されたシーケンスを生成する。
最初のトレーニングモデルが人間の価値観と一致しなくてはならない場合、他のモデルよりも一定の継続が望ましい。
ユーザとモデル間の双方向インタラクションとして,この構造化の実践について検討する。
論文 参考訳(メタデータ) (2023-12-30T11:44:59Z) - "You Are An Expert Linguistic Annotator": Limits of LLMs as Analyzers of
Abstract Meaning Representation [60.863629647985526]
文意味構造の解析において, GPT-3, ChatGPT, および GPT-4 モデルの成功と限界について検討した。
モデルはAMRの基本形式を確実に再現でき、しばしばコアイベント、引数、修飾子構造をキャプチャできる。
全体としては,これらのモデルではセマンティック構造の側面を捉えることができるが,完全に正確なセマンティック解析や解析をサポートする能力には重要な制限が残されている。
論文 参考訳(メタデータ) (2023-10-26T21:47:59Z) - Geometry of Language [0.0]
様々なソースからのアイデアを組み合わせながら、新しい合成で混ざり合った言語について、新しい視点を提示する。
問題は、エレガントな形式主義、普遍文法、あるいは人間の言語学の重要な側面を説明するメカニズムを定式化できるかどうかである。
このようなメカニズムは、その幾何学的性質によって、既存の論理的・文法的アプローチとは異なる。
論文 参考訳(メタデータ) (2023-03-09T12:22:28Z) - Variational Cross-Graph Reasoning and Adaptive Structured Semantics
Learning for Compositional Temporal Grounding [143.5927158318524]
テンポラルグラウンドティング(Temporal grounding)とは、クエリ文に従って、未編集のビデオから特定のセグメントを特定するタスクである。
新たに構成時間グラウンドタスクを導入し,2つの新しいデータセット分割を構築した。
ビデオや言語に内在する構造的意味論は、構成的一般化を実現する上で重要な要素である、と我々は主張する。
論文 参考訳(メタデータ) (2023-01-22T08:02:23Z) - Oracle Linguistic Graphs Complement a Pretrained Transformer Language
Model: A Cross-formalism Comparison [13.31232311913236]
言語グラフ表現が神経言語モデリングを補完し改善する程度について検討する。
全体としては、セマンティックな選挙区構造は言語モデリングのパフォーマンスに最も有用である。
論文 参考訳(メタデータ) (2021-12-15T04:29:02Z) - Plurality and Quantification in Graph Representation of Meaning [4.82512586077023]
我々のグラフ言語は、モナディックな2階変数のみを用いた自然言語意味論の本質を網羅している。
単純な構文意味インタフェースで意味グラフを構築するための統一型機構を提案する。
現在のグラフ形式は、分配的述語、カテゴリー横断接続、および量化表現のスコープ置換における言語問題に適用される。
論文 参考訳(メタデータ) (2021-12-13T07:04:41Z) - Decomposing lexical and compositional syntax and semantics with deep
language models [82.81964713263483]
GPT2のような言語変換器の活性化は、音声理解中の脳活動に線形にマップすることが示されている。
本稿では,言語モデルの高次元アクティベーションを,語彙,構成,構文,意味表現の4つのクラスに分類する分類法を提案する。
その結果は2つの結果が浮かび上がった。
まず、構成表現は、語彙よりも広範な皮質ネットワークを募集し、両側の側頭、頭頂、前頭前皮質を包含する。
論文 参考訳(メタデータ) (2021-03-02T10:24:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。