CarboNeXT and CarboFormer: Dual Semantic Segmentation Architectures for Detecting and Quantifying Carbon Dioxide Emissions Using Optical Gas Imaging
- URL: http://arxiv.org/abs/2506.05360v1
- Date: Fri, 23 May 2025 18:01:42 GMT
- Title: CarboNeXT and CarboFormer: Dual Semantic Segmentation Architectures for Detecting and Quantifying Carbon Dioxide Emissions Using Optical Gas Imaging
- Authors: Taminul Islam, Toqi Tahamid Sarker, Mohamed G Embaby, Khaled R Ahmed, Amer AbuGhazaleh,
- Abstract summary: Carbon dioxide (CO$$) emissions are critical indicators of both environmental impact and various industrial processes, including livestock management.<n>We introduce CarboNeXT, a semantic segmentation framework for Optical Gas Imaging (OGI), designed to detect and quantify CO$$ emissions across diverse applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Carbon dioxide (CO$_2$) emissions are critical indicators of both environmental impact and various industrial processes, including livestock management. We introduce CarboNeXT, a semantic segmentation framework for Optical Gas Imaging (OGI), designed to detect and quantify CO$_2$ emissions across diverse applications. Our approach integrates a multi-scale context aggregation network with UPerHead and auxiliary FCN components to effectively model both local details and global relationships in gas plume imagery. We contribute two novel datasets: (1) the Controlled Carbon Dioxide Release (CCR) dataset, which simulates gas leaks with systematically varied flow rates (10-100 SCCM), and (2) the Real Time Ankom (RTA) dataset, focusing on emissions from dairy cow rumen fluid in vitro experiments. Extensive evaluations demonstrate that CarboNeXT outperforms state-of-the-art methods, achieving 88.46% mIoU on CCR and 92.95% mIoU on RTA, with particular effectiveness in challenging low-flow scenarios. The model operates at 60.95 FPS, enabling real-time monitoring applications. Additionally, we propose CarboFormer, a lightweight variant with only 5.07M parameters that achieves 84.68 FPS, with competitive performance of 84.88% mIoU on CCR and 92.98% on RTA, making it suitable for resource-constrained platforms such as programmable drones. Our work advances both environmental sensing and precision livestock management by providing robust tools for CO$_2$ emission analysis, with a specific focus on livestock applications.
Related papers
- Diffusion-Modeled Reinforcement Learning for Carbon and Risk-Aware Microgrid Optimization [48.70916202664808]
DiffCarl is a diffusion-modeled carbon- and risk-aware reinforcement learning algorithm for intelligent operation of multi-microgrid systems.<n>It outperforms classic algorithms and state-of-the-art DRL solutions, with 2.3-30.1% lower operational cost.<n>It also achieves 28.7% lower carbon emissions than those of its carbon-unaware variant and reduces performance variability.
arXiv Detail & Related papers (2025-07-22T03:27:07Z) - Improving Power Plant CO2 Emission Estimation with Deep Learning and Satellite/Simulated Data [0.0]
CO2 emissions from power plants, as significant super emitters, substantially contribute to global warming.<n>This study addresses challenges by expanding the available dataset through the integration of NO2 data from Sentinel-5P, generating continuous XCO2 maps, and incorporating real satellite observations from OCO-2/3 for over 71 power plants in data-scarce regions.
arXiv Detail & Related papers (2025-02-04T08:05:15Z) - Enhancing Carbon Emission Reduction Strategies using OCO and ICOS data [40.572754656757475]
We propose a methodology to enhance local CO2 monitoring by integrating satellite data from the Orbiting Carbon Observatories (OCO-2 and OCO-3) with ground level observations from the Integrated Carbon Observation System (ICOS) and weather data from the ECMWF Reanalysis v5 (ERA5)
We employ weighted K-nearest neighbor (KNN) with machine learning models to predict ground level CO2 from satellite measurements, achieving a Root Mean Squared Error of 3.92 ppm.
arXiv Detail & Related papers (2024-10-05T21:23:58Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Gasformer: A Transformer-based Architecture for Segmenting Methane Emissions from Livestock in Optical Gas Imaging [0.0]
Methane emissions from livestock, particularly cattle, significantly contribute to climate change.
We introduce Gasformer, a novel semantic segmentation architecture for detecting low-flow rate methane emissions from livestock.
We present two unique datasets captured with a FLIR GF77 OGI camera.
arXiv Detail & Related papers (2024-04-16T18:38:23Z) - Machine Guided Discovery of Novel Carbon Capture Solvents [48.7576911714538]
Machine learning offers a promising method for reducing the time and resource burdens of materials development.
We have developed an end-to-end "discovery cycle" to select new aqueous amines compatible with the commercially viable acid gas scrubbing carbon capture.
The prediction process shows 60% accuracy against experiment for both material parameters and 80% for a single parameter on an external test set.
arXiv Detail & Related papers (2023-03-24T18:32:38Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language
Model [72.65502770895417]
We quantify the carbon footprint of BLOOM, a 176-billion parameter language model, across its life cycle.
We estimate that BLOOM's final training emitted approximately 24.7 tonnes ofcarboneqif we consider only the dynamic power consumption.
We conclude with a discussion regarding the difficulty of precisely estimating the carbon footprint of machine learning models.
arXiv Detail & Related papers (2022-11-03T17:13:48Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Near Real-time CO$_2$ Emissions Based on Carbon Satellite And Artificial
Intelligence [20.727982405167758]
We propose an integral AI based pipeline that contains both a data retrieval algorithm and a two-step data-driven solution.
First, the data retrieval algorithm can generate effective datasets from multi-modal data including carbon satellite, the information of carbon sources, and several environmental factors.
Second, the two-step data-driven solution that applies the powerful representation of deep learning techniques to learn to quantify anthropogenic CO$$ emissions.
arXiv Detail & Related papers (2022-10-11T12:01:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.