State Estimation and Control of Dynamic Systems from High-Dimensional Image Data
- URL: http://arxiv.org/abs/2506.05375v1
- Date: Fri, 30 May 2025 17:40:06 GMT
- Title: State Estimation and Control of Dynamic Systems from High-Dimensional Image Data
- Authors: Ashik E Rasul, Hyung-Jin Yoon,
- Abstract summary: This paper introduces a novel neural architecture that integrates spatial feature extraction using convolutional neural networks (CNNs) and temporal modeling through gated recurrent units (GRUs)<n> Experimental results demonstrate that our proposed approach enables real-time, accurate estimation and control without direct access to ground-truth states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate state estimation is critical for optimal policy design in dynamic systems. However, obtaining true system states is often impractical or infeasible, complicating the policy learning process. This paper introduces a novel neural architecture that integrates spatial feature extraction using convolutional neural networks (CNNs) and temporal modeling through gated recurrent units (GRUs), enabling effective state representation from sequences of images and corresponding actions. These learned state representations are used to train a reinforcement learning agent with a Deep Q-Network (DQN). Experimental results demonstrate that our proposed approach enables real-time, accurate estimation and control without direct access to ground-truth states. Additionally, we provide a quantitative evaluation methodology for assessing the accuracy of the learned states, highlighting their impact on policy performance and control stability.
Related papers
- Designing Robust Software Sensors for Nonlinear Systems via Neural Networks and Adaptive Sliding Mode Control [2.884893167166808]
This paper presents a novel approach to designing software sensors for nonlinear dynamical systems.<n>Unlike traditional model-based observers that rely on explicit transformations or linearization, the proposed framework integrates neural networks with adaptive Sliding Mode Control (SMC)<n>The training methodology leverages the system's governing equations as a physics-based constraint, enabling observer synthesis without access to ground-truth state trajectories.
arXiv Detail & Related papers (2025-07-09T13:06:58Z) - Data-assimilated model-informed reinforcement learning [3.4748713192043876]
In practice, sensors often provide only partial and noisy measurements (obations) of the system.<n>We propose a framework that enables the control of chaotic systems with partial and noisy observability.<n>We show that DA-MIRL successfully estimates and suppresses the chaotic dynamics of the environment in real time from partial observations and approximate models.
arXiv Detail & Related papers (2025-06-02T15:02:26Z) - Dynamic Manipulation of Deformable Objects in 3D: Simulation, Benchmark and Learning Strategy [88.8665000676562]
Prior methods often simplify the problem to low-speed or 2D settings, limiting their applicability to real-world 3D tasks.<n>To mitigate data scarcity, we introduce a novel simulation framework and benchmark grounded in reduced-order dynamics.<n>We propose Dynamics Informed Diffusion Policy (DIDP), a framework that integrates imitation pretraining with physics-informed test-time adaptation.
arXiv Detail & Related papers (2025-05-23T03:28:25Z) - Certified Neural Approximations of Nonlinear Dynamics [52.79163248326912]
In safety-critical contexts, the use of neural approximations requires formal bounds on their closeness to the underlying system.<n>We propose a novel, adaptive, and parallelizable verification method based on certified first-order models.
arXiv Detail & Related papers (2025-05-21T13:22:20Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.<n>Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.<n>Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - Meta-Learning for Physically-Constrained Neural System Identification [9.417562391585076]
We present a gradient-based meta-learning framework for rapid adaptation of neural state-space models (NSSMs) for black-box system identification.<n>We show that the meta-learned models result in improved downstream performance in model-based state estimation in indoor localization and energy systems.
arXiv Detail & Related papers (2025-01-10T18:46:28Z) - Learning from Demonstration with Implicit Nonlinear Dynamics Models [16.26835655544884]
We develop a recurrent neural network layer that includes a fixed nonlinear dynamical system with tunable dynamical properties for modelling temporal dynamics.<n>We validate the efficacy of our neural network layer on the task of reproducing human handwriting motions using the LASA Human Handwriting dataset.
arXiv Detail & Related papers (2024-09-27T14:12:49Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
We propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations.
Our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
arXiv Detail & Related papers (2023-01-27T22:28:19Z) - Value-Consistent Representation Learning for Data-Efficient
Reinforcement Learning [105.70602423944148]
We propose a novel method, called value-consistent representation learning (VCR), to learn representations that are directly related to decision-making.
Instead of aligning this imagined state with a real state returned by the environment, VCR applies a $Q$-value head on both states and obtains two distributions of action values.
It has been demonstrated that our methods achieve new state-of-the-art performance for search-free RL algorithms.
arXiv Detail & Related papers (2022-06-25T03:02:25Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Towards Learning Controllable Representations of Physical Systems [9.088303226909279]
Learned representations of dynamical systems reduce dimensionality, potentially supporting downstream reinforcement learning (RL)
We consider the relationship between the true state and the corresponding representations, proposing that ideally each representation corresponds to a unique state.
These metrics are shown to predict reinforcement learning performance in a simulated peg-in-hole task when comparing variants of autoencoder-based representations.
arXiv Detail & Related papers (2020-11-16T17:15:57Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.