Heterogeneous Secure Transmissions in IRS-Assisted NOMA Communications: CO-GNN Approach
- URL: http://arxiv.org/abs/2506.05381v1
- Date: Tue, 03 Jun 2025 04:01:50 GMT
- Title: Heterogeneous Secure Transmissions in IRS-Assisted NOMA Communications: CO-GNN Approach
- Authors: Linlin Liang, Zongkai Tian, Haiyan Huang, Xiaoyan Li, Zhisheng Yin, Dehua Zhang, Nina Zhang, Wenchao Zhai,
- Abstract summary: IRS-assisted NOMA communications have garnered significant research interest.<n>The passive nature of the IRS, lacking authentication and security protocols, makes these systems vulnerable to external eavesdropping.<n>This paper investigates secure transmissions in IRS-assisted NOMA systems with heterogeneous resource configuration in wireless networks to mitigate both external and internal eavesdropping.
- Score: 7.2414248136307195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent Reflecting Surfaces (IRS) enhance spectral efficiency by adjusting reflection phase shifts, while Non-Orthogonal Multiple Access (NOMA) increases system capacity. Consequently, IRS-assisted NOMA communications have garnered significant research interest. However, the passive nature of the IRS, lacking authentication and security protocols, makes these systems vulnerable to external eavesdropping due to the openness of electromagnetic signal propagation and reflection. NOMA's inherent multi-user signal superposition also introduces internal eavesdropping risks during user pairing. This paper investigates secure transmissions in IRS-assisted NOMA systems with heterogeneous resource configuration in wireless networks to mitigate both external and internal eavesdropping. To maximize the sum secrecy rate of legitimate users, we propose a combinatorial optimization graph neural network (CO-GNN) approach to jointly optimize beamforming at the base station, power allocation of NOMA users, and phase shifts of IRS for dynamic heterogeneous resource allocation, thereby enabling the design of dual-link or multi-link secure transmissions in the presence of eavesdroppers on the same or heterogeneous links. The CO-GNN algorithm simplifies the complex mathematical problem-solving process, eliminates the need for channel estimation, and enhances scalability. Simulation results demonstrate that the proposed algorithm significantly enhances the secure transmission performance of the system.
Related papers
- DNN-Based Precoding in RIS-Aided mmWave MIMO Systems With Practical Phase Shift [56.04579258267126]
This paper investigates maximizing the throughput of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with obstructed direct communication paths.<n>A reconfigurable intelligent surface (RIS) is employed to enhance transmissions, considering mmWave characteristics related to line-of-sight (LoS) and multipath effects.<n>Deep neural network (DNN) is developed to facilitate faster codeword selection.
arXiv Detail & Related papers (2025-07-03T17:35:06Z) - Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
Federated learning (FL) has been recognized as a viable solution for local-privacy-aware collaborative model training in wireless edge networks.<n>Most existing communication-efficient FL algorithms fail to reduce the significant inter-device variance.<n>We propose a novel communication-efficient FL algorithm, named FedQVR, which relies on a sophisticated variance-reduced scheme.
arXiv Detail & Related papers (2025-01-20T04:26:21Z) - Multi-Agent Hybrid SAC for Joint SS-DSA in CRNs [17.162697767466085]
Opportunistic spectrum access has the potential to increase the efficiency of spectrum utilization in cognitive radio networks (CRNs)<n>In CRNs, both spectrum sensing and resource allocation (SSRA) are critical to maximizing system throughput.<n>We develop a novel multi-agent implementation of hybrid soft actor critic, MHSAC.
arXiv Detail & Related papers (2024-04-22T16:30:03Z) - Joint User Association, Interference Cancellation and Power Control for
Multi-IRS Assisted UAV Communications [80.35959154762381]
Intelligent reflecting surface (IRS)-assisted unmanned aerial vehicle (UAV) communications are expected to alleviate the load of ground base stations in a cost-effective way.
Existing studies mainly focus on the deployment and resource allocation of a single IRS instead of multiple IRSs.
We propose a new optimization algorithm for joint IRS-user association, trajectory optimization of UAVs, successive interference cancellation (SIC) decoding order scheduling and power allocation.
arXiv Detail & Related papers (2023-12-08T01:57:10Z) - STAR-RIS-Assisted-Full-Duplex Jamming Design for Secure Wireless Communications System [38.44290756174189]
We propose a novel secure communication scheme to protect critical and sensitive devices from eavesdroppers.
We aim to maximize the FD beam shift coefficients for the ESRIS, as mode selection, as to eavesdropper amplitudes and phase shift coefficients for the MSRIS.
arXiv Detail & Related papers (2023-09-08T19:36:02Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
An active reconfigurable intelligent surface (RIS)-aided multi-user downlink communication system is investigated.
Non-orthogonal multiple access (NOMA) is employed to improve spectral efficiency, and the active RIS is powered by energy harvesting (EH)
An advanced LSTM based algorithm is developed to predict users' dynamic communication state.
A DDPG based algorithm is proposed to joint control the amplification matrix and phase shift matrix RIS.
arXiv Detail & Related papers (2023-04-11T13:16:28Z) - On the Robustness of Deep Reinforcement Learning in IRS-Aided Wireless
Communications Systems [31.70191055921352]
We consider an Intelligent Reflecting Surface (IRS)-aided multiple-input single-output (MISO) system for downlink transmission.
We compare the performance of Deep Reinforcement Learning (DRL) and conventional optimization methods in finding optimal phase shifts of the IRS elements.
We demonstrate numerically that DRL solutions show more robustness to noisy channels and user mobility.
arXiv Detail & Related papers (2021-07-17T17:42:25Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
Reconfigurable Intelligent Surfaces (RISs) are highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation.
One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs.
We devise low-complexity supervised learning approaches for the RISs' phase configurations.
arXiv Detail & Related papers (2020-10-09T05:35:27Z) - Millimeter Wave Communications with an Intelligent Reflector:
Performance Optimization and Distributional Reinforcement Learning [119.97450366894718]
A novel framework is proposed to optimize the downlink multi-user communication of a millimeter wave base station.
A channel estimation approach is developed to measure the channel state information (CSI) in real-time.
A distributional reinforcement learning (DRL) approach is proposed to learn the optimal IR reflection and maximize the expectation of downlink capacity.
arXiv Detail & Related papers (2020-02-24T22:18:54Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS)
The problem of joint deployment, phase shift design, as well as power allocation is formulated for maximizing the energy efficiency.
A novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset.
A decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS.
arXiv Detail & Related papers (2020-01-28T14:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.