Enhancing Neural Autoregressive Distribution Estimators for Image Reconstruction
- URL: http://arxiv.org/abs/2506.05391v2
- Date: Sun, 06 Jul 2025 09:18:14 GMT
- Title: Enhancing Neural Autoregressive Distribution Estimators for Image Reconstruction
- Authors: Ambrose Emmett-Iwaniw, Nathan Kirk,
- Abstract summary: We study the problem of observing a small subset of image pixels (referred to as a pixel patch) to predict the unobserved parts of the image.<n>We propose a generalized version of the convolutional neural autoregressive distribution estimation (ConvNADE) model adapted for real-valued and color images.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autoregressive models are often employed to learn distributions of image data by decomposing the $D$-dimensional density function into a product of one-dimensional conditional distributions. Each conditional depends on preceding variables (pixels, in the case of image data), making the order in which variables are processed fundamental to the model performance. In this paper, we study the problem of observing a small subset of image pixels (referred to as a pixel patch) to predict the unobserved parts of the image. As our prediction mechanism, we propose a generalized version of the convolutional neural autoregressive distribution estimation (ConvNADE) model adapted for real-valued and color images. Moreover, we investigate the quality of image reconstruction when observing both random pixel patches and low-discrepancy pixel patches inspired by quasi-Monte Carlo theory. Experiments on benchmark datasets demonstrate that, where design permits, pixels sampled or stored to preserve uniform coverage improves reconstruction fidelity and test performance.
Related papers
- Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
Digital image forensics plays a crucial role in image authentication and manipulation localization.
This paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts.
Experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints.
arXiv Detail & Related papers (2023-09-30T02:54:51Z) - Uncertainty Quantification via Neural Posterior Principal Components [26.26693707762823]
Uncertainty quantification is crucial for the deployment of image restoration models in safety-critical domains.
We present a method for predicting the PCs of the posterior distribution for any input image, in a single forward pass of a neural network.
Our method reliably conveys instance-adaptive uncertainty directions, achieving uncertainty quantification comparable with posterior samplers.
arXiv Detail & Related papers (2023-09-27T09:51:29Z) - Rethinking Polyp Segmentation from an Out-of-Distribution Perspective [37.1338930936671]
We leverage the ability of masked autoencoders -- self-supervised vision transformers trained on a reconstruction task -- to learn in-distribution representations.
We perform out-of-distribution reconstruction and inference, with feature space standardisation to align the latent distribution of the diverse abnormal samples with the statistics of the healthy samples.
Experimental results on six benchmarks show that our model has excellent segmentation performance and generalises across datasets.
arXiv Detail & Related papers (2023-06-13T14:13:16Z) - Generative Diffusion Prior for Unified Image Restoration and Enhancement [62.76390152617949]
Existing image restoration methods mostly leverage the posterior distribution of natural images.
We propose the Generative Diffusion Prior (GDP) to effectively model the posterior distributions in an unsupervised sampling manner.
GDP utilizes a pre-train denoising diffusion generative model (DDPM) for solving linear inverse, non-linear, or blind problems.
arXiv Detail & Related papers (2023-04-03T16:52:43Z) - Lossy Image Compression with Conditional Diffusion Models [25.158390422252097]
This paper outlines an end-to-end optimized lossy image compression framework using diffusion generative models.
In contrast to VAE-based neural compression, where the (mean) decoder is a deterministic neural network, our decoder is a conditional diffusion model.
Our approach yields stronger reported FID scores than the GAN-based model, while also yielding competitive performance with VAE-based models in several distortion metrics.
arXiv Detail & Related papers (2022-09-14T21:53:27Z) - FewGAN: Generating from the Joint Distribution of a Few Images [95.6635227371479]
We introduce FewGAN, a generative model for generating novel, high-quality and diverse images.
FewGAN is a hierarchical patch-GAN that applies quantization at the first coarse scale, followed by a pyramid of residual fully convolutional GANs at finer scales.
In an extensive set of experiments, it is shown that FewGAN outperforms baselines both quantitatively and qualitatively.
arXiv Detail & Related papers (2022-07-18T07:11:28Z) - Structured Uncertainty in the Observation Space of Variational
Autoencoders [20.709989481734794]
In image synthesis, sampling from such distributions produces spatially-incoherent results with uncorrelated pixel noise.
We propose an alternative model for the observation space, encoding spatial dependencies via a low-rank parameterisation.
In contrast to pixel-wise independent distributions, our samples seem to contain semantically meaningful variations from the mean allowing the prediction of multiple plausible outputs.
arXiv Detail & Related papers (2022-05-25T07:12:50Z) - Learning the Degradation Distribution for Blind Image Super-Resolution [43.95832398891317]
We propose a probabilistic degradation model (PDM), which studies the degradation $mathbfD$ as a random variable.
PDM could model more diverse degradations and generate HR-LR pairs that may better cover the various degradations of test images.
arXiv Detail & Related papers (2022-03-09T11:30:38Z) - PixelPyramids: Exact Inference Models from Lossless Image Pyramids [58.949070311990916]
Pixel-Pyramids is a block-autoregressive approach with scale-specific representations to encode the joint distribution of image pixels.
It yields state-of-the-art results for density estimation on various image datasets, especially for high-resolution data.
For CelebA-HQ 1024 x 1024, we observe that the density estimates are improved to 44% of the baseline despite sampling speeds superior even to easily parallelizable flow-based models.
arXiv Detail & Related papers (2021-10-17T10:47:29Z) - Low-Light Image Enhancement with Normalizing Flow [92.52290821418778]
In this paper, we investigate to model this one-to-many relationship via a proposed normalizing flow model.
An invertible network that takes the low-light images/features as the condition and learns to map the distribution of normally exposed images into a Gaussian distribution.
The experimental results on the existing benchmark datasets show our method achieves better quantitative and qualitative results, obtaining better-exposed illumination, less noise and artifact, and richer colors.
arXiv Detail & Related papers (2021-09-13T12:45:08Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - Perceptual Image Restoration with High-Quality Priori and Degradation
Learning [28.93489249639681]
We show that our model performs well in measuring the similarity between restored and degraded images.
Our simultaneous restoration and enhancement framework generalizes well to real-world complicated degradation types.
arXiv Detail & Related papers (2021-03-04T13:19:50Z) - Image Inpainting with Learnable Feature Imputation [8.293345261434943]
A regular convolution layer applying a filter in the same way over known and unknown areas causes visual artifacts in the inpainted image.
We propose (layer-wise) feature imputation of the missing input values to a convolution.
We present comparisons on CelebA-HQ and Places2 to current state-of-the-art to validate our model.
arXiv Detail & Related papers (2020-11-02T16:05:32Z) - Locally Masked Convolution for Autoregressive Models [107.4635841204146]
LMConv is a simple modification to the standard 2D convolution that allows arbitrary masks to be applied to the weights at each location in the image.
We learn an ensemble of distribution estimators that share parameters but differ in generation order, achieving improved performance on whole-image density estimation.
arXiv Detail & Related papers (2020-06-22T17:59:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.