Event Classification of Accelerometer Data for Industrial Package Monitoring with Embedded Deep Learning
- URL: http://arxiv.org/abs/2506.05435v1
- Date: Thu, 05 Jun 2025 09:55:58 GMT
- Title: Event Classification of Accelerometer Data for Industrial Package Monitoring with Embedded Deep Learning
- Authors: Manon Renault, Hamoud Younes, Hugo Tessier, Ronan Le Roy, Bastien Pasdeloup, Mathieu Léonardon,
- Abstract summary: We propose an approach that employs an embedded system, placed on reusable packages, to detect their state.<n>We aim to design a system with a lifespan of several years, corresponding to the lifespan of reusable packages.<n>We propose a pipeline that includes data processing, training, and evaluation of the deep learning model designed for imbalanced, multiclass time series data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Package monitoring is an important topic in industrial applications, with significant implications for operational efficiency and ecological sustainability. In this study, we propose an approach that employs an embedded system, placed on reusable packages, to detect their state (on a Forklift, in a Truck, or in an undetermined location). We aim to design a system with a lifespan of several years, corresponding to the lifespan of reusable packages. Our analysis demonstrates that maximizing device lifespan requires minimizing wake time. We propose a pipeline that includes data processing, training, and evaluation of the deep learning model designed for imbalanced, multiclass time series data collected from an embedded sensor. The method uses a one-dimensional Convolutional Neural Network architecture to classify accelerometer data from the IoT device. Before training, two data augmentation techniques are tested to solve the imbalance problem of the dataset: the Synthetic Minority Oversampling TEchnique and the ADAptive SYNthetic sampling approach. After training, compression techniques are implemented to have a small model size. On the considered twoclass problem, the methodology yields a precision of 94.54% for the first class and 95.83% for the second class, while compression techniques reduce the model size by a factor of four. The trained model is deployed on the IoT device, where it operates with a power consumption of 316 mW during inference.
Related papers
- Optimizing Model Splitting and Device Task Assignment for Deceptive Signal Assisted Private Multi-hop Split Learning [58.620753467152376]
In our model, several edge devices jointly perform collaborative training, and some eavesdroppers aim to collect the model and data information from devices.<n>To prevent the eavesdroppers from collecting model and data information, a subset of devices can transmit deceptive signals.<n>We propose a soft actor-critic deep reinforcement learning framework with intrinsic curiosity module and cross-attention.
arXiv Detail & Related papers (2025-07-09T22:53:23Z) - Smooth-Distill: A Self-distillation Framework for Multitask Learning with Wearable Sensor Data [0.0]
This paper introduces Smooth-Distill, a novel self-distillation framework designed to simultaneously perform human activity recognition (HAR) and sensor placement detection.<n>Unlike conventional distillation methods that require separate teacher and student models, the proposed framework utilizes a smoothed, historical version of the model itself as the teacher.<n> Experimental results show that Smooth-Distill consistently outperforms alternative approaches across different evaluation scenarios.
arXiv Detail & Related papers (2025-06-27T06:51:51Z) - Private Training & Data Generation by Clustering Embeddings [74.00687214400021]
Differential privacy (DP) provides a robust framework for protecting individual data.<n>We introduce a novel principled method for DP synthetic image embedding generation.<n> Empirically, a simple two-layer neural network trained on synthetically generated embeddings achieves state-of-the-art (SOTA) classification accuracy.
arXiv Detail & Related papers (2025-06-20T00:17:14Z) - MiniCPM4: Ultra-Efficient LLMs on End Devices [124.73631357883228]
MiniCPM4 is a highly efficient large language model (LLM) designed explicitly for end-side devices.<n>We achieve this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems.<n>MiniCPM4 is available in two versions, with 0.5B and 8B parameters, respectively.
arXiv Detail & Related papers (2025-06-09T16:16:50Z) - SMI: An Information-Theoretic Metric for Predicting Model Knowledge Solely from Pre-Training Signals [51.60874286674908]
We aim to predict performance in closed-book question answering (QA), a vital downstream task indicative of a model's internal knowledge.<n>We conduct large-scale retrieval and semantic analysis across the pre-training corpora of 21 publicly available and 3 custom-trained large language models.<n>Building on these foundations, we propose Size-dependent Mutual Information (SMI), an information-theoretic metric that linearly correlates pre-training data characteristics, model size, and QA accuracy.
arXiv Detail & Related papers (2025-02-06T13:23:53Z) - Physics Sensor Based Deep Learning Fall Detection System [0.9128828609564524]
We build a complete system named TSFallDetect including data receiving device based on embedded sensor.
We exploit the sequential deep-learning methods to address this falling motion prediction problem based on data collected by inertial and film pressure sensors.
arXiv Detail & Related papers (2024-02-29T07:50:06Z) - Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data [0.0]
In this work, we demonstrate a novel anomaly detection system on induction motors used in pumps, compressors, fans, and other industrial machines.
We use a combination of pre-processing techniques and machine learning (ML) models with a low computational cost.
arXiv Detail & Related papers (2023-10-15T18:43:45Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Prune2Edge: A Multi-Phase Pruning Pipelines to Deep Ensemble Learning in
IIoT [0.0]
We propose a novel edge-based multi-phase pruning pipelines to ensemble learning on IIoT devices.
In the first phase, we generate a diverse ensemble of pruned models, then we apply integer quantisation, next we prune the generated ensemble using a clustering-based technique.
Our proposed approach was able to outperform the predictability levels of a baseline model.
arXiv Detail & Related papers (2020-04-09T17:44:34Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z) - Multilinear Compressive Learning with Prior Knowledge [106.12874293597754]
Multilinear Compressive Learning (MCL) framework combines Multilinear Compressive Sensing and Machine Learning into an end-to-end system.
Key idea behind MCL is the assumption of the existence of a tensor subspace which can capture the essential features from the signal for the downstream learning task.
In this paper, we propose a novel solution to address both of the aforementioned requirements, i.e., How to find those tensor subspaces in which the signals of interest are highly separable?
arXiv Detail & Related papers (2020-02-17T19:06:05Z) - On the impact of selected modern deep-learning techniques to the
performance and celerity of classification models in an experimental
high-energy physics use case [0.0]
Deep learning techniques are tested in the context of a classification problem encountered in the domain of high-energy physics.
The advantages are evaluated in terms of both performance metrics and the time required to train and apply the resulting models.
A new wrapper library for PyTorch called LUMIN is presented, which incorporates all of the techniques studied.
arXiv Detail & Related papers (2020-02-03T12:29:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.