論文の概要: Sentiment Analysis in Learning Management Systems Understanding Student Feedback at Scale
- arxiv url: http://arxiv.org/abs/2506.05490v1
- Date: Thu, 05 Jun 2025 18:13:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.190016
- Title: Sentiment Analysis in Learning Management Systems Understanding Student Feedback at Scale
- Title(参考訳): 学生のフィードバックを大規模に理解する学習管理システムにおける感性分析
- Authors: Mohammed Almutairi,
- Abstract要約: 非言語コミュニケーションの欠如は、教育経験の有効性を低下させる言葉によるフィードバックへの依存につながった。
本稿では,学生と教師のギャップを埋めるために,感情分析を学習管理システム(LMS)に統合することを検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: During the wake of the Covid-19 pandemic, the educational paradigm has experienced a major change from in person learning traditional to online platforms. The change of learning convention has impacted the teacher-student especially in non-verbal communication. The absent of non-verbal communication has led to a reliance on verbal feedback which diminished the efficacy of the educational experience. This paper explores the integration of sentiment analysis into learning management systems (LMS) to bridge the student-teacher's gap by offering an alternative approach to interpreting student feedback beyond its verbal context. The research involves data preparation, feature selection, and the development of a deep neural network model encompassing word embedding, LSTM, and attention mechanisms. This model is compared against a logistic regression baseline to evaluate its efficacy in understanding student feedback. The study aims to bridge the communication gap between instructors and students in online learning environments, offering insights into the emotional context of student feedback and ultimately improving the quality of online education.
- Abstract(参考訳): Covid-19のパンデミックの後、教育パラダイムは、従来の学習からオンラインプラットフォームへの大きな変化を経験してきた。
学習慣行の変化は、特に非言語コミュニケーションにおける教師-学生に影響を与えている。
非言語コミュニケーションの欠如は、教育経験の有効性を低下させる言葉によるフィードバックへの依存につながった。
本稿では,学習者間のギャップを埋めるために,感情分析を学習管理システム(LMS)に統合することを検討する。
この研究は、データ準備、特徴選択、および単語埋め込み、LSTM、注意機構を含むディープニューラルネットワークモデルの開発を含む。
このモデルは、学生のフィードバックを理解する上での有効性を評価するために、ロジスティック回帰ベースラインと比較される。
この研究は、オンライン学習環境におけるインストラクターと学生のコミュニケーションギャップを埋めることを目的としており、学生のフィードバックの感情的文脈に関する洞察を提供し、最終的にはオンライン教育の質を向上させることを目的としている。
関連論文リスト
- Playpen: An Environment for Exploring Learning Through Conversational Interaction [81.67330926729015]
本研究は,対話ゲームが学習のフィードバック信号の源として機能するかどうかを考察する。
本稿では,対話ゲームによるオフラインおよびオンライン学習環境であるPlaypenを紹介する。
SFTによる模倣学習は、目に見えないインスタンスのパフォーマンスを向上させるが、他のスキルに悪影響を及ぼす。
論文 参考訳(メタデータ) (2025-04-11T14:49:33Z) - Evaluating Pedagogical Incentives in Undergraduate Computing: A Mixed Methods Approach Using Learning Analytics [0.0]
本稿では,ユニヴァーシティ・カレッジ・ロンドンにおける1年目のコンピュータ・モジュールにおける新たな教育的インセンティブの効果を評価する。
我々は、学習分析と質的データを組み合わせて、これらのインセンティブの有効性を学生のエンゲージメントを高めるために、混合手法を用いて評価する。
本稿では,データ駆動型客観分析を学生の視点と統合した,生徒のエンゲージメントに対する解釈可能かつ行動可能なモデルを提案する。
論文 参考訳(メタデータ) (2024-03-13T16:39:38Z) - Revealing Networks: Understanding Effective Teacher Practices in
AI-Supported Classrooms using Transmodal Ordered Network Analysis [0.9187505256430948]
本研究は,AI教師と連携した数学教室において,システム内学習の伝統的な指標に関連する効果的な教員の実践を理解するために,トランスモーダル順序ネットワーク分析を用いた。
教師の実践を学生の学習率で比較すると,低学率の生徒はモニタリング後,より有意な使用感を示した。
学習率の低い生徒は、高学率の学生と同様の学習行動を示し、教師の正しい試みを繰り返した。
論文 参考訳(メタデータ) (2023-12-17T21:50:02Z) - Strategize Before Teaching: A Conversational Tutoring System with
Pedagogy Self-Distillation [35.11534904787774]
本稿では,教育応答生成と教育戦略予測を組み合わせた統合フレームワークを提案する。
我々の実験と分析は、授業戦略がダイアログ学習に与える影響について光を当てた。
論文 参考訳(メタデータ) (2023-02-27T03:43:25Z) - Opportunities and Challenges in Neural Dialog Tutoring [54.07241332881601]
言語学習のための2つの対話学習データセットを用いて、様々な生成言語モデルを厳密に分析する。
現在のアプローチでは、制約のある学習シナリオでチューリングをモデル化できますが、制約の少ないシナリオではパフォーマンスが悪くなります。
人的品質評価では, モデルと接地木アノテーションの両方が, 同等のチュータリングの点で低い性能を示した。
論文 参考訳(メタデータ) (2023-01-24T11:00:17Z) - How does online teamwork change student communication patterns in
programming courses? [0.0]
近年の研究では、対人コミュニケーションがオンライン教育の学習結果に肯定的な影響を及ぼすことが示されている。
本研究では,MOOCにおけるピアコミュニケーションが制限されているコミュニケーションパターンと,オンライン・ピア・インストラクションに学生が関与しているブレンド・コースのコミュニケーションパターンを比較した。
論文 参考訳(メタデータ) (2022-04-08T18:34:52Z) - A literature survey on student feedback assessment tools and their usage
in sentiment analysis [0.0]
我々は,Kahoot!, Mentimeter, Padlet, pollingなどのクラス内フィードバック評価手法の有効性を評価する。
学生の質的なフィードバックコメントから明確な提案を抽出する感情分析モデルを提案する。
論文 参考訳(メタデータ) (2021-09-09T06:56:30Z) - Comparative Study of Learning Outcomes for Online Learning Platforms [47.5164159412965]
パーソナライゼーションとアクティブラーニングは、学習の成功の鍵となる側面です。
私たちは2つの人気のあるオンライン学習プラットフォームの学習結果の比較正面調査を実施します。
論文 参考訳(メタデータ) (2021-04-15T20:40:24Z) - Point Adversarial Self Mining: A Simple Method for Facial Expression
Recognition [79.75964372862279]
本稿では,表情認識における認識精度を向上させるために,PASM(Point Adversarial Self Mining)を提案する。
PASMは、目標タスクに関連する最も情報性の高い位置を見つけるために、ポイント敵攻撃法と訓練された教師ネットワークを使用する。
適応学習教材の生成と教師/学生の更新を複数回行うことができ、ネットワーク能力が反復的に向上する。
論文 参考訳(メタデータ) (2020-08-26T06:39:24Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
教師の音声記録から質問を自動的に検出するエンドツーエンドのニューラルネットワークフレームワークを構築している。
マルチタスク学習手法を取り入れることで,質問の種類によって意味的関係の理解を深めることが可能となる。
論文 参考訳(メタデータ) (2020-05-16T02:17:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。