論文の概要: Evaluating Pedagogical Incentives in Undergraduate Computing: A Mixed Methods Approach Using Learning Analytics
- arxiv url: http://arxiv.org/abs/2403.14686v1
- Date: Wed, 13 Mar 2024 16:39:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 03:23:33.655582
- Title: Evaluating Pedagogical Incentives in Undergraduate Computing: A Mixed Methods Approach Using Learning Analytics
- Title(参考訳): 大学生における教育インセンティブの評価:学習分析を用いた混合手法によるアプローチ
- Authors: Laura J. Johnston, Takoua Jendoubi,
- Abstract要約: 本稿では,ユニヴァーシティ・カレッジ・ロンドンにおける1年目のコンピュータ・モジュールにおける新たな教育的インセンティブの効果を評価する。
我々は、学習分析と質的データを組み合わせて、これらのインセンティブの有効性を学生のエンゲージメントを高めるために、混合手法を用いて評価する。
本稿では,データ駆動型客観分析を学生の視点と統合した,生徒のエンゲージメントに対する解釈可能かつ行動可能なモデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the context of higher education's evolving dynamics post-COVID-19, this paper assesses the impact of new pedagogical incentives implemented in a first-year undergraduate computing module at University College London. We employ a mixed methods approach, combining learning analytics with qualitative data, to evaluate the effectiveness of these incentives on increasing student engagement. A longitudinal overview of resource interactions is mapped through Bayesian network analysis of Moodle activity logs from 204 students. This analysis identifies early resource engagement as a predictive indicator of continued engagement while also suggesting that the new incentives disproportionately benefit highly engaged students. Focus group discussions complement this analysis, providing insights into student perceptions of the pedagogical changes and the module design. These qualitative findings underscore the challenge of sustaining engagement through the new incentives and highlight the importance of communication in blended learning environments. Our paper introduces an interpretable and actionable model for student engagement, which integrates objective, data-driven analysis with students' perspectives. This model provides educators with a tool to evaluate and improve instructional strategies. By demonstrating the effectiveness of our mixed methods approach in capturing the intricacies of student behaviour in digital learning environments, we underscore the model's potential to improve online pedagogical practices across diverse educational settings.
- Abstract(参考訳): 本稿では,大学ロンドン校の1年生コンピューティング・モジュールで実施される新たな教育的インセンティブの影響について検討する。
我々は、学習分析と質的データを組み合わせた混合手法を用いて、学生のエンゲージメントを高めるためのインセンティブの有効性を評価する。
204人の学生のMoodle活動ログのベイズネットワーク解析を通して,資源相互作用の経年的概要を解析した。
この分析は,早期の資源獲得を継続的エンゲージメントの予測指標とし,新たなインセンティブが高度エンゲージメントの学生に不均等に利益をもたらすことを示唆している。
焦点グループによる議論はこの分析を補完し、教育的変化とモジュール設計に関する学生の認識に関する洞察を提供する。
これらの質的な発見は、新たなインセンティブを通じてエンゲージメントを維持することの課題を浮き彫りにし、ブレンド学習環境におけるコミュニケーションの重要性を強調している。
本稿では,データ駆動型客観分析を学生の視点と統合した,生徒のエンゲージメントに対する解釈可能かつ行動可能なモデルを提案する。
このモデルは、教育者に対して、教育戦略を評価し改善するためのツールを提供する。
デジタル学習環境における生徒の行動の複雑さを捉えるための混合手法の有効性を実証することにより、多様な教育環境におけるオンライン教育実践を改善するためのモデルの可能性を強調した。
関連論文リスト
- A General Model for Detecting Learner Engagement: Implementation and Evaluation [0.0]
本稿では,学習者のエンゲージメントレベルを検出するための特徴の選択と処理のための,汎用的で軽量なモデルを提案する。
本研究では,DAiSEEデータセットの映像を分析し,学習者のエンゲージメントのダイナミックな意義を捉えた。
提案モデルは,特定の実装において68.57%の精度を達成し,学習者のエンゲージメントレベルを検出する最先端モデルより優れている。
論文 参考訳(メタデータ) (2024-05-07T12:11:15Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
言語モデル(LM)を教育専門家として活用し,学習結果に対する様々な指導の影響を評価する。
本稿では,一方のLMが他方のLMの判断を報酬関数として利用して命令材料を生成する命令最適化手法を提案する。
ヒトの教師によるこれらのLM生成ワークシートの評価は、LM判定と人間の教師の嗜好との間に有意な整合性を示す。
論文 参考訳(メタデータ) (2024-03-05T09:09:15Z) - Harnessing Transparent Learning Analytics for Individualized Support
through Auto-detection of Engagement in Face-to-Face Collaborative Learning [3.0184625301151833]
本稿では,共同作業における学生の個人参加を自動的に検出する透過的アプローチを提案する。
提案手法は,学生の個人的関与を反映し,異なる協調学習課題を持つ生徒を識別する指標として利用することができる。
論文 参考訳(メタデータ) (2024-01-03T12:20:28Z) - Revealing Networks: Understanding Effective Teacher Practices in
AI-Supported Classrooms using Transmodal Ordered Network Analysis [0.9187505256430948]
本研究は,AI教師と連携した数学教室において,システム内学習の伝統的な指標に関連する効果的な教員の実践を理解するために,トランスモーダル順序ネットワーク分析を用いた。
教師の実践を学生の学習率で比較すると,低学率の生徒はモニタリング後,より有意な使用感を示した。
学習率の低い生徒は、高学率の学生と同様の学習行動を示し、教師の正しい試みを繰り返した。
論文 参考訳(メタデータ) (2023-12-17T21:50:02Z) - EIT: Earnest Insight Toolkit for Evaluating Students' Earnestness in
Interactive Lecture Participation Exercises [2.6794462297854627]
Earnest Insight Toolkit (EIT)は、対話型講義参加演習における学生のエンゲージメントを評価するためのツールである。
我々の目的は、リスクの高い学生を識別する貴重な手段を教育者に提供することであり、介入と支援戦略を強化することである。
論文 参考訳(メタデータ) (2023-10-31T07:05:00Z) - A Hierarchy-based Analysis Approach for Blended Learning: A Case Study
with Chinese Students [12.533646830917213]
本稿では,混合学習評価のための階層型評価手法を提案する。
その結果、混合学習評価において、認知的エンゲージメントと感情的エンゲージメントがより重要であることが示された。
論文 参考訳(メタデータ) (2023-09-19T00:09:00Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
NERモデルの堅牢性を改善するために,自己学習型教員学生フレームワークを提案する。
本稿では,2つの教員ネットワークからなる適応型教員学習を提案する。
微粒な学生アンサンブルは、教師モデルの各フラグメントを、生徒の対応するフラグメントの時間移動平均で更新し、各モデルフラグメントのノイズに対する一貫した予測を強化する。
論文 参考訳(メタデータ) (2022-12-13T12:14:09Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
我々は,データプライバシを同時に保持し,モデルの安定性を向上させるために,Pear Study Learning (PSL) と呼ばれる責任あるアクティブラーニング手法を提案する。
まず,クラウドサイドのタスク学習者(教師)から未学習データを分離する。
トレーニング中、タスク学習者は軽量なアクティブ学習者に指示し、アクティブサンプリング基準に対するフィードバックを提供する。
論文 参考訳(メタデータ) (2022-11-24T13:18:27Z) - Unsupervised Domain Adaptive Person Re-Identification via Human Learning
Imitation [67.52229938775294]
近年、研究者は、異なる人物の再識別データセット間のドメインギャップを減らすために、教師学生フレームワークを彼らの手法に活用することを提案している。
近年の教員中心の枠組みに基づく手法に着想を得て,異なる側面から人間の学習過程を模倣するためのさらなる探究を提案する。
論文 参考訳(メタデータ) (2021-11-28T01:14:29Z) - Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network [56.62345811216183]
本稿では,対話型オンライン質問プールにおいて,より優れた生徒のパフォーマンス予測を実現するために,グラフニューラルネットワーク(GNN)を用いた新しいアプローチを提案する。
具体的には,学生のインタラクションを用いた学生と質問の関係をモデル化し,学生のインタラクション・クエストネットワークを構築する。
1631の質問に対して4000人以上の学生の問題解決過程において生成した104,113個のマウス軌跡からなる実世界のデータセットに対するアプローチの有効性を評価した。
論文 参考訳(メタデータ) (2020-08-04T14:55:32Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。