On-the-fly Reconstruction for Large-Scale Novel View Synthesis from Unposed Images
- URL: http://arxiv.org/abs/2506.05558v1
- Date: Thu, 05 Jun 2025 20:10:18 GMT
- Title: On-the-fly Reconstruction for Large-Scale Novel View Synthesis from Unposed Images
- Authors: Andreas Meuleman, Ishaan Shah, Alexandre Lanvin, Bernhard Kerbl, George Drettakis,
- Abstract summary: We present an on-the-fly method to produce camera poses and a trained 3DGS immediately after capture.<n>Our method can handle dense and wide-baseline captures of ordered photo sequences and large-scale scenes.
- Score: 48.8544345503807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radiance field methods such as 3D Gaussian Splatting (3DGS) allow easy reconstruction from photos, enabling free-viewpoint navigation. Nonetheless, pose estimation using Structure from Motion and 3DGS optimization can still each take between minutes and hours of computation after capture is complete. SLAM methods combined with 3DGS are fast but struggle with wide camera baselines and large scenes. We present an on-the-fly method to produce camera poses and a trained 3DGS immediately after capture. Our method can handle dense and wide-baseline captures of ordered photo sequences and large-scale scenes. To do this, we first introduce fast initial pose estimation, exploiting learned features and a GPU-friendly mini bundle adjustment. We then introduce direct sampling of Gaussian primitive positions and shapes, incrementally spawning primitives where required, significantly accelerating training. These two efficient steps allow fast and robust joint optimization of poses and Gaussian primitives. Our incremental approach handles large-scale scenes by introducing scalable radiance field construction, progressively clustering 3DGS primitives, storing them in anchors, and offloading them from the GPU. Clustered primitives are progressively merged, keeping the required scale of 3DGS at any viewpoint. We evaluate our solution on a variety of datasets and show that our solution can provide on-the-fly processing of all the capture scenarios and scene sizes we target while remaining competitive with other methods that only handle specific capture styles or scene sizes in speed, image quality, or both.
Related papers
- ICP-3DGS: SfM-free 3D Gaussian Splatting for Large-scale Unbounded Scenes [4.089605790376984]
We propose to incorporate Iterative Closest Point (ICP) with optimization-based refinement to achieve accurate camera pose estimation under large camera movements.<n>We also introduce a voxel-based scene densification approach to guide the reconstruction in large-scale scenes.<n> Experiments demonstrate that our approach ICP-3DGS outperforms existing methods in both camera pose estimation and novel view synthesis.
arXiv Detail & Related papers (2025-06-24T21:10:06Z) - KeyGS: A Keyframe-Centric Gaussian Splatting Method for Monocular Image Sequences [14.792295042683254]
We present an efficient framework that operates without any depth or matching model.<n>We propose a coarse-to-fine frequency-aware densification to reconstruct different levels of details.
arXiv Detail & Related papers (2024-12-30T07:32:35Z) - SfM-Free 3D Gaussian Splatting via Hierarchical Training [42.85362760049813]
We propose a novel SfM-Free 3DGS (SFGS) method for video input, eliminating the need for known camera poses and SfM preprocessing.<n>Our approach introduces a hierarchical training strategy that trains and merges multiple 3D Gaussian representations into a single, unified 3DGS model.<n> Experimental results reveal that our approach significantly surpasses state-of-the-art SfM-free novel view synthesis methods.
arXiv Detail & Related papers (2024-12-02T14:39:06Z) - Look Gauss, No Pose: Novel View Synthesis using Gaussian Splatting without Accurate Pose Initialization [11.418632671254564]
3D Gaussian Splatting has emerged as a powerful tool for fast and accurate novel-view synthesis from a set of posed input images.
We propose an extension to the 3D Gaussian Splatting framework by optimizing the extrinsic camera parameters with respect to photometric residuals.
We show results on real-world scenes and complex trajectories through simulated environments.
arXiv Detail & Related papers (2024-10-11T12:01:15Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled sensitivity pruning score that preserves visual fidelity and foreground details at significantly higher compression ratios.<n>We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model without changing its training pipeline.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - InstantSplat: Sparse-view Gaussian Splatting in Seconds [91.77050739918037]
We introduce InstantSplat, a novel approach for addressing sparse-view 3D scene reconstruction at lightning-fast speed.<n>InstantSplat employs a self-supervised framework that optimize 3D scene representation and camera poses.<n>It achieves an acceleration of over 30x in reconstruction and improves visual quality (SSIM) from 0.3755 to 0.7624 compared to traditional SfM with 3D-GS.
arXiv Detail & Related papers (2024-03-29T17:29:58Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - BAA-NGP: Bundle-Adjusting Accelerated Neural Graphics Primitives [6.431806897364565]
Implicit neural representations have become pivotal in robotic perception, enabling robots to comprehend 3D environments from 2D images.
We propose a framework called bundle-adjusting accelerated neural graphics primitives (BAA-NGP)
Results demonstrate 10 to 20 x speed improvement compared to other bundle-adjusting neural radiance field methods.
arXiv Detail & Related papers (2023-06-07T05:36:45Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.