論文の概要: Aerial Multi-View Stereo via Adaptive Depth Range Inference and Normal Cues
- arxiv url: http://arxiv.org/abs/2506.05655v1
- Date: Fri, 06 Jun 2025 01:14:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 21:34:56.757288
- Title: Aerial Multi-View Stereo via Adaptive Depth Range Inference and Normal Cues
- Title(参考訳): 適応深さ範囲推論と正規キューによる空中多視点ステレオ
- Authors: Yimei Liu, Yakun Ju, Yuan Rao, Hao Fan, Junyu Dong, Feng Gao, Qian Du,
- Abstract要約: 本稿では,多視点深度推定精度を向上させるための適応深度MVS(ADR-MVS)を提案する。
ADR-MVSは、クロスアテンション離散性学習を用いて、深さと正規推定値から適応範囲マップを生成する。
実験により,ADR-MVSはWHU,LuoJia-MVS,M"unchenデータセット上で最先端の性能を実現することが示された。
- 参考スコア(独自算出の注目度): 38.954104931025704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Three-dimensional digital urban reconstruction from multi-view aerial images is a critical application where deep multi-view stereo (MVS) methods outperform traditional techniques. However, existing methods commonly overlook the key differences between aerial and close-range settings, such as varying depth ranges along epipolar lines and insensitive feature-matching associated with low-detailed aerial images. To address these issues, we propose an Adaptive Depth Range MVS (ADR-MVS), which integrates monocular geometric cues to improve multi-view depth estimation accuracy. The key component of ADR-MVS is the depth range predictor, which generates adaptive range maps from depth and normal estimates using cross-attention discrepancy learning. In the first stage, the range map derived from monocular cues breaks through predefined depth boundaries, improving feature-matching discriminability and mitigating convergence to local optima. In later stages, the inferred range maps are progressively narrowed, ultimately aligning with the cascaded MVS framework for precise depth regression. Moreover, a normal-guided cost aggregation operation is specially devised for aerial stereo images to improve geometric awareness within the cost volume. Finally, we introduce a normal-guided depth refinement module that surpasses existing RGB-guided techniques. Experimental results demonstrate that ADR-MVS achieves state-of-the-art performance on the WHU, LuoJia-MVS, and M\"unchen datasets, while exhibits superior computational complexity.
- Abstract(参考訳): 多視点空中画像からの3次元デジタル都市再構築は、深層多視点ステレオ(MVS)法が従来の手法より優れている重要な応用である。
しかし, 従来の手法では, 地平線沿いの深度範囲や, 低解像度の航空画像に付随する不感な特徴マッチングなど, 空と近距離設定の主な違いを見落としていることが多い。
これらの問題に対処するために,単図形幾何学的手がかりを統合し,多視点深度推定精度を向上させるAdaptive Depth Range MVS (ADR-MVS)を提案する。
ADR-MVS の鍵となる要素は深度範囲予測器であり、これは深度と通常の推定値からアダプティブレンジマップを生成する。
第1段階では、単分子キューから導出されるレンジマップは、予め定義された深さ境界を突破し、特徴マッチングの識別性を改善し、局所最適への収束を緩和する。
後段では、推定範囲マップは徐々に狭まっていき、最終的にカスケードされたMVSフレームワークと整合して正確な深度回帰を行う。
さらに, 空間ステレオ画像に対して, 通常の誘導型コストアグリゲーション操作を特別に考案し, コスト容積内の幾何学的認識を改善する。
最後に,既存のRGB誘導技術を超える正規誘導深度改善モジュールを提案する。
実験結果から,ADR-MVSはWHU,LuoJia-MVS,M\"unchenデータセット上での最先端性能を実現し,計算複雑性が優れていることが示された。
関連論文リスト
- Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model [62.37493746544967]
カメラベースの設定は、立体深度推定を用いて高解像度の高解像度深度マップを生成することで、コスト効率のよい選択肢を提供する。
既存の全方位ステレオマッチング手法は、様々な環境において限られた深度精度しか達成できない。
DFI-OmniStereoは, 大規模事前学習基礎モデルを用いて, 相対的な単眼深度推定を行う新しい全方位ステレオマッチング法である。
論文 参考訳(メタデータ) (2025-03-30T16:24:22Z) - Multi-view Reconstruction via SfM-guided Monocular Depth Estimation [92.89227629434316]
マルチビュー幾何再構成のための新しい手法を提案する。
深度推定プロセスに、より強力なマルチビューであるSfM情報を組み込む。
本手法は, 従来の単分子深度推定法と比較して, 深度推定の精度を著しく向上させる。
論文 参考訳(メタデータ) (2025-03-18T17:54:06Z) - Adaptive Stereo Depth Estimation with Multi-Spectral Images Across All Lighting Conditions [58.88917836512819]
本稿では,立体深度推定を取り入れた新しいフレームワークを提案し,正確な幾何学的制約を強制する。
照明の劣化がステレオマッチングに与える影響を軽減するために,劣化マスキングを導入する。
提案手法は,Multi-Spectral Stereo(MS2)データセット上でのSOTA(State-of-the-art)性能を実現する。
論文 参考訳(メタデータ) (2024-11-06T03:30:46Z) - ARAI-MVSNet: A multi-view stereo depth estimation network with adaptive
depth range and depth interval [19.28042366225802]
マルチビューステレオ(MVS)は幾何学的コンピュータビジョンの基本的な問題である。
適応的な全画素深度範囲と深度間隔を実現するために,新しい多段粗大化フレームワークを提案する。
我々のモデルは最先端の性能を達成し、競争一般化能力を得る。
論文 参考訳(メタデータ) (2023-08-17T14:52:11Z) - V-FUSE: Volumetric Depth Map Fusion with Long-Range Constraints [6.7197802356130465]
本稿では,Multi-View Stereo(MVS)アルゴリズムによって生成された深度マップと信頼マップのセットを入力として受け入れ,改良する学習ベースの深度マップ融合フレームワークを提案する。
また、各線に沿った深度仮説探索空間を減らすために、より大きな融合サブネットワークと共に訓練された深度探索ウィンドウ推定サブネットワークを導入する。
本手法は,データから直接,深度コンセンサスと可視性制約の違反をモデル化することを学ぶ。
論文 参考訳(メタデータ) (2023-08-17T00:39:56Z) - Rethinking Disparity: A Depth Range Free Multi-View Stereo Based on
Disparity [17.98608948955211]
既存の学習ベースのマルチビューステレオ(MVS)手法は、3Dコストボリュームを構築するために深さ範囲に依存している。
本稿では,DipMVSと呼ばれるエピポーラ分散フロー(E-flow)に基づく分散型MVS法を提案する。
本研究では、DipMVSは深さ範囲に敏感ではなく、GPUメモリを低くすることで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-11-30T11:05:02Z) - Non-learning Stereo-aided Depth Completion under Mis-projection via
Selective Stereo Matching [0.5067618621449753]
一対のステレオ画像で導かれる光検出・測度センサ(LiDAR)を用いて捉えたスパース深度マップの非学習深度補完法を提案する。
提案手法は, 平均絶対誤差(MAE)を0.65倍に減らし, 従来よりも約2倍の精度で推定できることを示した。
論文 参考訳(メタデータ) (2022-10-04T07:46:56Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
RGB-D Salient Object Detection (SOD) のための新しいマルチタスク・マルチモーダルフィルタトランス (MMFT) ネットワークを提案する。
具体的には、深度推定、健全な物体検出、輪郭推定の3つの相補的なタスクを統合する。マルチタスク機構は、タスク認識の特徴を補助タスクから学習するためのモデルを促進する。
実験の結果、複数のデータセット上での深度に基づくRGB-D SOD法をはるかに上回るだけでなく、高品質の深度マップと塩分濃度を同時に正確に予測できることがわかった。
論文 参考訳(メタデータ) (2022-03-09T17:20:18Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
誘導DSRのための新しい注意に基づく階層型マルチモーダル融合ネットワークを提案する。
本手法は,再現精度,動作速度,メモリ効率の点で最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:28:33Z) - Attention Aware Cost Volume Pyramid Based Multi-view Stereo Network for
3D Reconstruction [12.728154351588053]
マルチビュー画像から3次元再構成を行うための効率的なマルチビューステレオ(MVS)ネットワークを提案する。
高分解能深度を実現するために粗粒度深度推論戦略を導入する。
論文 参考訳(メタデータ) (2020-11-25T13:34:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。