論文の概要: Any-Class Presence Likelihood for Robust Multi-Label Classification with Abundant Negative Data
- arxiv url: http://arxiv.org/abs/2506.05721v1
- Date: Fri, 06 Jun 2025 03:59:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.310806
- Title: Any-Class Presence Likelihood for Robust Multi-Label Classification with Abundant Negative Data
- Title(参考訳): 冗長な負データを用いたロバストなマルチラベル分類のための任意のクラス存在感
- Authors: Dumindu Tissera, Omar Awadallah, Muhammad Umair Danish, Ayan Sadhu, Katarina Grolinger,
- Abstract要約: マルチラベル分類(MLC)は、インスタンスを1つ以上の非排他クラスに割り当てる。
工業的欠陥検出、農業病の特定、医療診断などのLCC応用では、大量の負のデータに遭遇することが一般的である。
正の例において,不在クラス確率の相対的寄与を任意のクラスの存在可能性に制御する正規化パラメータを導入する。
- 参考スコア(独自算出の注目度): 0.6990493129893112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-label Classification (MLC) assigns an instance to one or more non-exclusive classes. A challenge arises when the dataset contains a large proportion of instances with no assigned class, referred to as negative data, which can overwhelm the learning process and hinder the accurate identification and classification of positive instances. Nevertheless, it is common in MLC applications such as industrial defect detection, agricultural disease identification, and healthcare diagnosis to encounter large amounts of negative data. Assigning a separate negative class to these instances further complicates the learning objective and introduces unnecessary redundancies. To address this challenge, we redesign standard MLC loss functions by deriving a likelihood of any class being present, formulated by a normalized weighted geometric mean of the predicted class probabilities. We introduce a regularization parameter that controls the relative contribution of the absent class probabilities to the any-class presence likelihood in positive instances. The any-class presence likelihood complements the multi-label learning by encouraging the network to become more aware of implicit positive instances and improve the label classification within those positive instances. Experiments on large-scale datasets with negative data: SewerML, modified COCO, and ChestX-ray14, across various networks and base loss functions show that our loss functions consistently improve MLC performance of their standard loss counterparts, achieving gains of up to 6.01 percentage points in F1, 8.06 in F2, and 3.11 in mean average precision, all without additional parameters or computational complexity. Code available at: https://github.com/ML-for-Sensor-Data-Western/gmean-mlc
- Abstract(参考訳): マルチラベル分類(MLC)は、インスタンスを1つ以上の非排他クラスに割り当てる。
データセットに割り当てられたクラスを持たない大量のインスタンスが含まれており、負のデータと呼ばれ、学習プロセスに圧倒され、正のインスタンスの正確な識別と分類を妨げる可能性がある。
それでも、産業的欠陥検出、農業病の特定、医療診断などのLCC応用では、大量の負のデータに遭遇することが一般的である。
これらのインスタンスに別の負のクラスを割り当てると、学習の目的はさらに複雑になり、不要な冗長性を導入する。
この課題に対処するために、予測されたクラス確率の正規化幾何平均で定式化された任意のクラスが存在する確率を導出することにより、標準的なLCC損失関数を再設計する。
正の例において,不在クラス確率の相対的寄与を任意のクラスの存在可能性に制御する正規化パラメータを導入する。
任意のクラスの存在の可能性は、ネットワークが暗黙の正のインスタンスをより意識し、それらの正のインスタンス内のラベル分類を改善することによって、マルチラベル学習を補完する。
SwerML、修正COCO、ChestX-ray14といった、さまざまなネットワークやベース損失関数による大規模なデータセットの実験では、損失関数は標準損失関数のLCC性能を一貫して改善し、F1では最大6.01ポイント、F2では8.06ポイント、平均精度は3.11ポイント向上し、いずれも追加パラメータや複雑性を伴わない。
https://github.com/ML-for-Sensor-Data-Western/gmean-mlc
関連論文リスト
- Learning in Imperfect Environment: Multi-Label Classification with
Long-Tailed Distribution and Partial Labels [53.68653940062605]
新しいタスク, 部分ラベリングとLong-Tailed Multi-Label Classification (PLT-MLC) を導入する。
その結果,ほとんどのLT-MLCとPL-MLCは劣化MLCの解決に失敗していることがわかった。
textbfCOrrection $rightarrow$ textbfModificattextbfIon $rightarrow$ balantextbfCe。
論文 参考訳(メタデータ) (2023-04-20T20:05:08Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Complementary Labels Learning with Augmented Classes [22.460256396941528]
補完ラベル学習 (Complementary Labels Learning, CLL) は、プライベート質問分類やオンライン学習など、現実世界の多くのタスクに現れる。
CLLAC(Complementary Labels Learning with Augmented Classs)と呼ばれる新しい問題設定を提案する。
ラベルのないデータを用いて,CLLACの分類リスクの偏りのない推定手法を提案する。
論文 参考訳(メタデータ) (2022-11-19T13:55:27Z) - Analysis of Estimating the Bayes Rule for Gaussian Mixture Models with a
Specified Missing-Data Mechanism [0.0]
半教師付き学習(SSL)アプローチは、幅広い工学と科学の分野でうまく適用されている。
本稿では、未分類観測のための欠落機構を持つ生成モデルフレームワークについて検討する。
論文 参考訳(メタデータ) (2022-10-25T06:10:45Z) - Class-Imbalanced Complementary-Label Learning via Weighted Loss [8.934943507699131]
補完ラベル学習(Complementary-label Learning, CLL)は、弱い教師付き分類において広く用いられている。
クラス不均衡のトレーニングサンプルに直面すると、現実世界のデータセットでは大きな課題に直面します。
多クラス分類のためのクラス不均衡補完ラベルからの学習を可能にする新しい問題設定を提案する。
論文 参考訳(メタデータ) (2022-09-28T16:02:42Z) - Learning from Multiple Unlabeled Datasets with Partial Risk
Regularization [80.54710259664698]
本稿では,クラスラベルを使わずに正確な分類器を学習することを目的とする。
まず、与えられたラベルのない集合から推定できる分類リスクの偏りのない推定器を導出する。
その結果、経験的リスクがトレーニング中に負になるにつれて、分類器が過度に適合する傾向があることが判明した。
実験により,本手法は,複数の未ラベル集合から学習する最先端の手法を効果的に緩和し,性能を向上することを示した。
論文 参考訳(メタデータ) (2022-07-04T16:22:44Z) - Improving Contrastive Learning on Imbalanced Seed Data via Open-World
Sampling [96.8742582581744]
我々は、Model-Aware K-center (MAK)と呼ばれるオープンワールドなラベルなしデータサンプリングフレームワークを提案する。
MAKは、尾性、近接性、多様性の3つの単純な原則に従う。
我々はMAKが学習した機能の全体的な表現品質とクラスバランス性の両方を継続的に改善できることを実証した。
論文 参考訳(メタデータ) (2021-11-01T15:09:41Z) - sigmoidF1: A Smooth F1 Score Surrogate Loss for Multilabel
Classification [42.37189502220329]
マルチラベル分類評価の複雑さを考慮した損失関数 sigmoidF1 を提案する。
SigmoidF1は4つのデータセットといくつかのメトリクスで他の損失関数よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-24T08:11:33Z) - PLM: Partial Label Masking for Imbalanced Multi-label Classification [59.68444804243782]
長いラベルの分布を持つ実世界のデータセットで訓練されたニューラルネットワークは、頻繁なクラスに偏りがあり、頻繁なクラスでは不十分である。
本稿では,この比率を利用したPLM(Partial Label Masking)を提案する。
本手法は,マルチラベル (MultiMNIST と MSCOCO) とシングルラベル (CIFAR-10 と CIFAR-100) の2つの画像分類データセットにおいて,既存の手法と比較して高い性能を実現する。
論文 参考訳(メタデータ) (2021-05-22T18:07:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。